|  Sign In


Faculity: physics                                             College: Sciences


1.       Program Title: Lasers Physics and their Applications

2.       Program code and number: Phys 335

3.       Faculty member responsible for the program: Dr. Sausan Sawaf

4.       Qualification required for faculty member: Dr. In.

5.       No. of units/Credit hours: 3 hrs.

6.       level at which this course is offered: 8th level

7.       Pre-requisites: -

8.       Co-requisites: 353 Phys

9.       General Goal of program:

·         Ability to understand basic Laser.

·         Understanding behavior of Laser and Properties of Laser beams.

·         Optic resonance.

·         Types of Lasers

·         Develop Knowledge of Laser Applications of Laser

10.  Short Description of the course:
Introduction to Laser.  Resonators.  Transient Laser Behavior, Properties  of  Laser beams.  Types of Laser.,  Applications of Laser

11.   Topics to be covered


# weeks




Laser Fundamentals.





Properties of Laser Radiation





Type of Lasers





Laser output





Laser’s Applications






12.   Teaching Strategies, program Outcomes, and methods of Assessment:



Cognitive Skills

Interpersonal Skills and Responsibility

Analytic and Comm.

Teaching Strategies





program Outcomes





methods of Assessment





  1. Teaching Sources:

a)      Books or notes:         

         I.            LASERS PRINCIPLES AND APPLICATIONS by J. Wilson & J. F. Hawkes(مترجم)

       II.            LASER THE LIGHT EXTRAORDINARY by Abdallah M. Azzeer & V. Masilamani, (1999).

     III.            ABC of Laser by Abdallah M. Azzeer & V. Masilamani (1999).

     IV.            LASERS Theory and Practice by J. Hawkes & I. Latimer

       V.            OPTOELECTRONICS: An Introduction by J. Wilson & J. F.B. Hawkes

     VI.            LASERS AND THEIR APPLICATIONS by M. J. Beesely

   VII.            AN INTRODUCTION TO LASERS AND THEIR APPLICATIONS by O’shea, Callen and Rhodes


     IX.            LASER FUNDUMENTALS by W. T. Silfvast

       X.            ATOMIC PHYSICS OF LASERS by D. A. Eastham

     XI.            LASER TECHNOLOGY by H. M. Muncheryan

·              ضوئيات الكم والليزر تأليف د خالد الخطيب و د  وليد حمودي

·              مفاهيم تكنولوجيا الليزر تأليف سي بي هتز ، ترجمة صالح نوري صالح وهشام الراوي

·              الليزر وتطبيقاتها تأليف أسعد الأوسي

·              الليزر تأليف فرانسيس هارتمان وترجمة نبيل صبري

b)      Extra references: Lecture notes

c)       Electronic sources: NA

d)      Teaching aids: Transparencies, data show

Date of approval of program specification

Date of major program review



  1. Student evaluation:


      Midterm2 :13



      Final Exam:60

Course syllabus

1. Introduction - Laser Radiation and its properties.

1.1 Electromagnetic radiation - in vacuum and in matter.

1.2 Properties of laser radiation - Monochromaticity, Directionality, Coherence.

2. Laser Mechanism.

2.1 Bohr model of an atom.

2.2 Photons and Energy levels diagrams.

2.3 Absorption of electromagnetic radiation.

2.4 Spontaneous emission of electromagnetic radiation.

2.5 Thermodynamic equilibrium.

2.6 Population inversion.

2.7 Stimulated emission.

2.8 Rate equations.

2.9 Stimulated transitions.

2.10 Amplification.

2.11 3 level laser.

2.12 4 level laser.

3. Laser system.

3.1 Active medium.

3.2 Excitation mechanism.

3.3 Feedback mechanism.

3.4 Output coupler.

3.5 Interactive Demonstration.

4. Optical cavity and oscillation modes.

4.1 Standing waves.

4.2 Longitudinal modes in a laser.

4.3 Transverse modes in a laser.

4.4 Optical Cavity.

5. Amplification in a laser - Laser Gain.

5.1 Fluorescence line shape.

5.2 Amplification in a closed loop path between the mirrors of the optical cavity.

5.3 "Hole burning" in the amplification curve.

6. Laser types and their characteristics.

 Laser types introduction

6.1 Gas lasers:

Atom Gas:

6.1.1 Helium-Neon Laser (He-Ne).

6.1.2 Metal Vapor Laser (Copper, Gold).

6.1.3 Helium Cadmium Laser (He-Cd).

Ion Gas:

6.1.4 Argon Ion Laser (Ar+).

6.1.5 Krypton Laser (Kr+).

Molecular Gas:

6.1.6 Carbon Dioxide Laser (CO2).

6.1.7 Nitrogen Laser (N2).

6.1.8 Excimer Laser.

6.1.9 Chemical Laser.

6.1.10 Far Infra-Red Laser (FIR).

6.2 Solid State lasers:

6.2.1 Ruby Laser.

6.2.2 Neodimium YAG and Nd Glass Laser.

6.2.3 Alexandrite Laser.

6.2.4 Color Center Laser.

6.2.5 Titanium Sapphire Laser.

6.3 Diode Laser (Semiconductor Laser, Injection Laser).

6.4 Dye Laser (Liquid).

6.5 Special Lasers:

6.5.1 Free Electron Laser (FEL).

6.5.2 X Ray Laser.

7. Characteristics of Laser Radiation.

7.0 Radiometry and measurement of Electromagnetic Radiation.

7.1 Spatial Energy Distribution at the Laser Output.

7.2 Laser Beam Divergence and Focusing Capability.

7.3 Pulsed Radiation.

7.4 Special Mechanisms for creating Pulses ("Q" switch and Mode Lock).

7.5 Polarization of Electromagnetic Radiation.

8. Control of the Characteristics of Laser Radiation.

8.1 Control of spatial properties of the beam.

8.2 Control of the wavelength.

8.3 Choosing a specific longitudinal mode with etalon.

9. Laser Applications.

9.1 Industrial applications.

9.1.1 Accurate measurements (Distance, Movement, Interferometry).

9.1.2 Straight line marking, or plan of reference.

9.1.3 Material working (cutting, welding, hardening, melting, evaporating, photolithography, etc.).

9.1.4 Spectral analysis.

9.2 Medical applications.

9.2.1 Laser surgery.

9.2.2 Laser in diagnostic medicine, and in combination with drugs.

9.2.3 Soft lasers (Wound healing, pain relief, cosmetic applications).

9.3 Military applications.

9.3.1 Laser range-finder.

9.3.2 Target designation.

9.3.3 Laser weapons ("Star War").

9.3.4 Laser blinding for man and sensitive equipment.

9.4  Daily applications

9.4.1 Compact disk - Optical storage of information.

9.4.2 Laser printer.

9.4.3 Optical disc drives.

9.4.4 Optical computer.

9.4.5 Bar code scanner.

9.4.6 Holograms against forgery (on credit cards, money, special goods, etc.).

9.4.7 Fiber optic communications.

9.4.8 Free space communications.

9.4.9 Laser shows (Lasarium) (in discotheques and open theaters).

9.4.10 Holograms in exhibits and museums.

9.4.11 Kinetic sculptures.

9.5 Scientific research applications.

9.5.1 Spectroscopy.

9.5.2 Laser (inertial) fusion.

9.5.3 Very short pulses (10-15 femtosec).

9.5.4 Laser cooling of atoms.

9.5.5 Study of the interaction of electromagnetic radiation with matter.

9.6 Special applications.

9.6.1 Energy transport in space.

9.6.2 Laser gyroscope.

9.6.3 Fiber laser.

10. Holography.

10.0 Holography.

10.1 Coherence of Light.

10.2 Principles of holographic photography.

10.3 Hologram types.

10.4 Applications of holograms.

10.5 Medium for recording Holograms.


 أهداف المقرر

تعريف الطالب بأساسيات تفاعل الضوء مع المادة و أساسيات وخصائص أشعة الليزرو بعض أنواع الليزرات وتطبيقاتها

  الكتاب المقرر:

 مبادئ الليزرات و تطبيقاتها     ترجمة   د. محمد بن صالح الصالحي  ، د. عبد الله بن صالح الضويان

الناشر: مطابع جامعة الملك سعود, 1424 هـ/ 2003م

 محتويات المقرر:

أساسيات الليزر : امتصاص وانبعاث الضوء، علاقات اينشتاين، التوزع المعكوس، معامل الكسب ، الرنانات الضوئية ، أنماط الليزر

 أنواع الليزرات :

ليزرات المواد الصلبة ( نيوديميوم ياج، نيوديميوم الزجاج، الياقوت، الإكساندريت،  المركز اللوني)،ليزرات أشباه الموصلات

الليزرات الغازية ( هليوم نيون، بخار النحاس، أيون الأرجون، هليوم كادميوم، ثاني  أكسيد الكربون، النيتروجين، الإكسايمر، الليزرات الكيميائية،  الليزرات تحت الحمراء) ، ليزرات الصبغة السائلة ، ليزر الإلكترون الحر، وبعض أنواع الليزرات الحديثة.

خصائص أشعة الليزر: عرض الخط الطيفي لليزر، انفراج الشعاع، ترابط الشعاع، اللمعان‘ تجميع أشعة الليزر، تبديل معامل ــ Q ، مضاعفة التردد ، مزاوجة الطور

تطبيقات أشعة الليزر: الطبية ، الصناعية، العسكرية ، العلمية ، القياسية ، الهولوغرافي ،الاتصالات.



King Saud University. All rights reserved, 2007 | Disclaimer |   CiteSeerx