Search
 |  Sign In
 

Guidelines_English_Final

 

 

PHYS 323 Electromagnetism (II) (3 credit-hours)

 Faculity: physics                                College: Sciences

1.      Program Title: Electromagnetism -2

2.      Program code and number: Phys 323

3.      Faculty member responsible for the program: Dr. Sausan Sawaf

4.      Qualification required for faculty member: Ph.D.

5.      No. of units/Credit hours: 3 hrs.

6.      level at which this course is offered: 6th level

7.      Pre-requisites: 201 Phys

8.      Co-requisites: 292 Phys

9.      General Goal of program:

·         Review the basic electrostatic Field, electrostatic Energy, and Magnetic Field.

·         Develop an ability to solve basic electric circuits with direct current.

·         Develop an ability to analyze electric systems using required basics and the energy stored in an electric field and the resulting forces.

·         Understanding the fact that a moving charged particle is deflected by magnetic field.

·         Understanding the induced electromotive force and Faraday Induction law.

·         Express the magnetic field of atomic current in macroscopic body.

·         Understanding all four of Maxwell’s equations and re examine all four equations as group.

·         Discuss plane Electromagnetic waves in free space and then in dielectrics

10.  Short Description of the course:
Review of vector analysis, differential and integral calculus.  Electrostatics field and potential, work and energy, Poisson’s & Laplace's equations.  Electrostatic field in matter.  , steady current, Ohm's Law & the equation of continuity. Magneto statics, Production of magnetic fields, Ampere's Law.  Electrodynamics - Faraday's Law, Lenz's Law.  Maxwell's equation with their applications.

  1. Student evaluation:

*      Midterm1:7

*      Midterm 2:10

*      Homeworke:10

*      In-class Problem solving:3

*   resarch: 10

*      Final Exam:60

12.  Topics to be covered

 

week

Topics

HOUR 1

HOUR 2

HOUR 3

1

Vector and Scalar Fields

Line and Surface Integrals , Differential Caculus

Gradient, Divergence and , The Curl

2

Problem Solving

Electrostatics Force ,Electric Fields Charge  Dipoles

Continuous Charge Distributions

3

problem solving electric field of continuous charge distributions

Gauss Law

Gauss Law and its application

4

Electric potential  Charge Dipoles

Continuous Charge Distributions

Problem Solving  potential Field of Continuous Charge Distributions

5

Conductors and Insulators electrostatic fields in matter

Polarization, Dielectrics , Induced Dipoles

Capacitance ,Capacitors and dielectrics

6

Conductors  Basic Properties of  Conductors  Induced Charge

The surface Charge on a Conductor; the Force on a Surface Charge

Problem Solving

7

Direct Current,  Kirchhoff's Loop Rules

Mid term

Exam Review

8

The magnetic field of conductors.

Ampere’s law and its applications

Problem Solving

9

Charges moving in B Fields

Magnetic Force

Problem Solving

10

Faraday’s law  Electromagnetic Induction and Lenz’s law

Inductance

Energy in Magnetic Fields

Induced electromotive force

Problem Solving

11

Self and  mutual inductance

Dipoles and Magnetic Fields

Inductance and LR Circuits

12

Energy in Inductors

Electromagnetic Induction

Problem Solving

13

Mid term

Exam Review

Project  presentations

14

Maxwell's Equations in Free Space

Maxwell's Equations inside Matter

Problem Solving

15

Electromagnetic Waves

The Wave Equation

Monochromatic plane waves in vacuum

Problem Solving

Project  presentations

 

13. Teaching Sources:

 

Main Reference:

1. Electromagnetism Principles and Applications, Second Edition, P. Lorrian and D. R. Corson, Freeman & Comp USA, 1997.

Useful References:

2. 2000 Solved Problems in Electromagnetics, S. A. Nasar, Schaum's Outline Series, Mc-Graw Hill, Inc, USA, 1992.

3. REA'S Problem Solvers Electromagnetics, Ed. M. Fogiei, Research and Education Association, USA, 1993.

4. Electricity and Magnetism Simulations, the constium for upper level Physics Software, Ehrlich Roelofs, Stoner Tusznski, Jhon Wiley & Sons Inc, USA,1995.

5. Physics for scientist s and engineering by serway

6. Physics By: Halliday ,Resnick,Krane

7. Physics for student of science and Engineering by J.M.Tanner A.L.Stanford

3 – الكتب والمراجع العربية الموصى بها  :

*      8 . الكهرومغناطيسية لغازي القيسي دار النشر المسيرة – عمان

*       .9المجالات والموجات الكهرومغناطيسية م. د. علي الكاملي، د. علي الحجري ، د. عبد العزيز الشهراني، مطبوعات جامعة الملك سعودالرياض، المملكة العربية السعودية ، ١٤٢٣ ه ، ٢٠٠٢ م.

*      2000.10 مسألة محلولة في الكهرومغناطيسية ,سلسلة شوم (مترجم) د م . فايز فوق العادة

4- مواقع الانترنت

*      http://ocw.mit.edu/OcwWeb /Physics/8-02Electricity-and-MagnetismSpring2002/VideoLectures/index.htm

*      http://www.physicsclassroom.com

a)      b)      Extra references: Lecture notes

c)      Electronic sources: NA

d)      Teaching aids: Transparencies, data show

 

 

Details:

 CHAPTER ONE: VECTOR ANALYSIS

1.1 VECTOR ALGEBRA

1.1.1 Vector Operations

1.1.2 Vector Algebra: Component Form

1.1.3 Triple Products

 1.2 DIFFRENTIAL CACULUS

1.2.1 Ordinary derivative

1.2.2 Gradient

1.2.3 The Del (Operator)

1.2.4 Divergence

1.2.5 The Curl

1.2.6 Product Rules

1.2.7 Second derivatives

 1.3 INTEGRAL CACULUS

1.3.1 Ordinary Integration

1.3.2 The Fundamental Theorem for Gradients

1.3.3 The Fundamental Theorem for Divergences

1.3.4 The Fundamental Theorem for Curl

1.4 CURVILINEAR CORDINATES

 1.4.1 Spherical Polar Coordinate

1.4.2 Cylindrical Coordinates

 CHAPTER TWO:  ELECTROSTATICS

 2.1 THE ELECTROSTATIC FIELD

 2.1.1 Coulomb's Law

2.1.2 The Electric Field

2.1.3 Continuous Charge Distributions

 2.2 DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS

 2.2.1 Field Lines and Gauss's Law

2.2.2 The Divergence of

2.2.3 Applications of Gauss's Law

2.2.4 The Curl of

 2.3 ELECTRIC POTINTIAL

 2.3.1 The Potential Difference between two points

2.3.2 The Relation between the Electric Field and the Gradient of a Scalar Potential

2.3.3 Poisson's Equation and Lap lace's Equation

2.3.4 Potential of a Charge Distribution

 2.4 WORK AND ENERGY IN ELECTROSTATICS

 2.4.1 The Work Done in Moving a Charge

2.4.2 The Energy of a Point Charge Distribution

2.4.3 The Energy of a Continuous Charge Distribution

 2.5 CONDUCTORS

 2.5.1 Basic Properties of Conductors

2.5.2 Induced Charges

2.5.3 The surface Charge on a Conductor; the Force on a Surface Charge

2.5.4 Capacitors

 CHAPTER THREE: ELECTROSTATIC FIELDS IN MATTER

 3.1 POLARIZATION

 3.1.1 Dielectrics

3.1.2 Induced Dipoles

 3.2 THE FIELD OF A POLARIZED OPJECT

 3.2.1 Bound Charges

3.2.2 The Field inside a Dielectric

3.4    THE ELECTRIC DISPLACEMENT AND LINEAR DIELECTRICS

3.4.1        Gauss's law in the Presence of Dielectrics

3.4.2        Susceptibility, Permittivity, Dielectric Constant

3.4.3        Energy in Dielectric Systems

 CHAPTER FOUR: MAGNETOSTATICS

 4.1 THE LORENTZ FORCE LAW

4.1.1 Magnetic Fields

4.1.2 Magnetic Forces

4.1.2 Currents

4.2    THE BIOT-SAVART LAW

4.2.1        Steady Currents

4.2.2        The Magnetic Field of a Steady Current

 4.3    THE DIVERGENCE AND CURL OF

 4.3.1        Straight-line Currents

4.3.2        The Divergence of

4.3.3        The Curl of

4.3.4        Ampere's law

4.3.5        Comparison of Magnetostatics and Electrostatics

 4.4    MAGNETC VECTOR POTENTIAL

CHAPTER FIVE: ELECTRODYNAMICS

5.1    ELECTROMOTIVE FORCE

 5.1.1        Ohm's Law

5.1.2        Electromotive Force

5.1.3        Motional emf

 5.2    FARADAY'S LAW

5.2.1        Electromagnetic Induction

5.2.2        Inductance

5.2.3        Energy in Magnetic Fields

5.3    MAXWELL'S EQUATIONS

 5.3.1       Maxwell's Equations in Free Space

5.3.4        Maxwell's Equations inside Matter

 Chapter Six: Electromagnetc Waves

 6.1 THE TAVE EQUATION

 6.2 ELECTROMAGNETIC WAVES IN NONCONDUCTING MEDIA

 
King Saud University. All rights reserved, 2007 | Disclaimer |   CiteSeerx