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Abstract

It is known now that, telegraph equation is more suitable than ordinary diffusion equation in modelling reaction

diffusion in several branches of sciences. Telegraph reaction diffusion Lotka–Volterra two competitive system is con-

sidered. We observed that this system can give rise to diffusive instability only in the presence of cross-diffusion. Local

and global stability analysis in the cross-diffusional effect are studied by considering suitable Lyapunov functional.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The mathematical model proposed by Shigesada et al. [1] in their study of spatial segregation of interacting species is

given by the following strongly coupled parabolic system,

ou1

ot
¼ r2 D11 þ a11u1 þ a12u2ð Þu1½ � þ u1ðc1 � a11u1 � a12u2Þ in XT ;

ou2

ot
¼ r2 D22 þ a21u1 þ a22u2ð Þu1½ � þ u1ðc2 � a21u1 � a22u2Þ in XT ;

9>=
>; ð1Þ

oui
om

¼ 0; i ¼ 1; 2 on oXT : ð2Þ

where r2 ¼
PN

i¼1ðo2x=ox2
i Þ, is the Laplace operator, X is a bounded smooth domain on RN with N P 1, oX and X are

the boundary and the closure of X, respectively, XT ¼ X 	 ½0; T ½ and oXT ¼ oX 	 ½0; T ½ for some T 2�0;1�; m is the

outward unit normal vector on oX, Dii, ci, aii (i ¼ 1; 2) are all positive constants while aii (i ¼ 1; 2) denote non-negative

constants. The initial values uiðx; 0Þ are non-negative smooth functions which are not identically zero. u1ðx; tÞ and

u2ðx; tÞ represents the densities of two competing species, D11 and D22 are their diffusion rates, c1 and c2 denote the

intrinsic growth rates, a11 and a22 account for intra-specific competitions, a21 and a12 are the coefficients of intra-specific

competitions, a11 and a22 are usually referred as self-diffusion pressures, and a12 and a21 are cross-diffusion pressures.

The term self diffusion implies passive transport and the population that behaves in this way displays movement of

individuals from a higher to a lower concentration region. Cross-diffusion term expresses the population fluxes of one

species due to the presence of other species. The value of cross-diffusion may be positive, negative or zero. Positive

cross-diffusion term denotes one species tends to move in the direction of lower concentration of another species and

negative cross-diffusion expresses the population fluxes of one species in the direction of higher concentration of an-

other species. Many workers have observed the effect of cross-diffusion in biochemical systems [2–8]. The idea that
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cross-diffusion can induce pattern forming instability in an ecological situation have been examined in [9,10]. Some

mathematical models for population dynamics with the inclusion of cross-diffusion as well as self diffusion are devel-

oped and showed that the effect of cross-diffusion may give rise to the segregation of two species [11].

The reaction diffusion Lotka–Volterra two species competition model can be written as [12]:

ou1

ot
¼ D11

o2u1

ox2
þ u1ðc1 � a11u1 � a12u2Þ;

ou2

ot
¼ D22

o2u2

ox2
þ u2ðc2 � a21u1 � a22u2Þ:

ð3Þ

System (3) has to be analyzed with the following initial and zero flux boundary conditions

uiðx; tÞ > 0;
oui
ox

����
x¼0;R

¼ 0; ð06 x6RÞ i ¼ 1; 2: ð4Þ

Zero flux conditions imply no external input is imposed from outside [13].

A Lotka–Volterra two species competition model without diffusion (uniform model) is given by

ou1

ot
¼ u1ðc1 � a11u1 � a12u2Þ;

ou2

ot
¼ u2ðc2 � a21u1 � a22u2Þ:

ð5Þ

It is known that this system has a unique coexisting equilibrium namely

u0
1 ¼

c1a22 � c2a12

a11a22 � a12a21

; u0
2 ¼

c2a11 � c1a21

a11a22 � a12a21

; ð6Þ

if

a11

a21

>
c1

c2

>
a12

a22

or

a11

a21

<
c1

c2

<
a12

a22

:

If a11a22 > a12a21, then the uniform model (5) is said to describe a tolerant competition and if a11a22 < a12a21 describe

a severe competition. For a tolerant competition this model is locally and globally stable if it has positive equilibrium

and in the severe case it is locally unstable if it admits a positive equilibrium and hence according to Turing theory [14],

the severe competition of two species model cannot generate a real biological pattern.

The well known telegraph diffusion equation is given by [15]

s
o2u
ot2

þ ou
ot

¼ D
o2u
ox2

; ð7Þ

where s is a time constant. The corresponding telegraph reaction diffusion-equation (TRD) given by [16,17] is

s
o2u
ot2

þ 1

�
� s

of
ou

�
ou
ot

¼ D
o2u
ox2

þ f ðuÞ; ð8Þ

where f ðuÞ represents the interacting term.

In many biological systems one studies interacting system, e.g., predator–prey, host–parasitoid, susceptible–infected,

etc. . . Hence the following generalization of TRD systems as proposed by [17] is

s
o2ui
ot2

þ oui
ot

� s
X
j

ouj
ot

ofi
ouj

¼ Dil
o2uiðx; tÞ

ox2
þ fiðu1; u2; . . . ; unÞ; ð9Þ

where i ¼ 1; 2; . . . ; n, l ¼ 1; 2; . . . ; n and Dil are the diffusion constants.

The case n ¼ 2 to a predator (u2)–prey (u1) system was applied to study Turing instability by Ahmed et al. [18]. Here

we suggest the following system:
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s
o2u1

ot2
þ 1 � s

of1

ou1

� �
ou1

ot
¼ D11

o2u1

ox2
þ f1ðu1; u2Þ;

f1 ¼ u1ðc1 � a11u1 � a12u2Þ;

s
o2u2

ot2
þ 1 � s

of2

ou2

� �
ou2

ot
¼ D22

o2u2

ox2
þ f2ðu1; u2Þ;

f2 ¼ u2ðc2 � a21u1 � a22u2Þ;

9>>>>>>=
>>>>>>;

ð10Þ

where

uiðx; tÞ > 0;
oui
ox

����
x¼0;R

¼ 0; ð06 x6RÞ; 0 < t < 1; aij > 0; 8 i; j ¼ 1; 2: ð11Þ

We call this system a telegraph reaction diffusion Lotka–Volterra two species competitive system.

Chattopadhyay and Chatterjee [12] showed that in the Lotka–Volterra diffusive model, cross-diffusional effect is

necessary for forming spatial pattern in Turing sense and the pattern thus evolved is globally stable in a suitable

parametric domain space. We will see in this paper that such results can be extended to our suggested system (10) and

(11). At present, in Section 2, we study the boundedness of system (10) and (11). Section 3 is devoted to study the local

and global stability analysis of our system. Section 4 is devoted for our conclusions.

2. Cross-diffusional effect in a telegraph reaction diffusion Lotka–Volterra two competitive system

Adding a cross-diffusion term in the first equation of (3), the system can be written as [12]

ou1

ot
¼ D11

o2u1

ox2
þ o

ox
D12ðu1Þ

ou2

ox


 �
þ u1ðc1 � a11u1 � a12u2Þ;

ou2

ot
¼ D22

o2u2

ox2
þ u2ðc2 � a21u1 � a22u2Þ;

ð12Þ

where D12ðu1Þ is the density dependent cross-diffusion coefficient of u1 such that

D12ðu1Þ ! 0; when u1 ! 0:

System (12) has to be analyzed with the same initial and zero flux boundary conditions (4).

As a special case, Chattopadhyay and Chatterjee are assumed that the density dependent cross-diffusion coefficient is

given by [12]

D12ðu1Þ ¼ D0
12

u1

�þ u1

� �
¼ D0

12 1

�
� �

u1

þ � � �
�
; ð13Þ

where � > 0 is very small so that

D12ðu1Þ � D0
12 8 u1 � �:

Chattopadhyay and Chatterjee studied the local stability analysis of the system (12) and (4) and they concluded that

for formation of biological pattern in Lotka–Volterra tolerant competitive system, cross-diffusion term in either species

is essential, i.e., cross-diffusion has an important role for achieving spatial pattern in this particular case. Also, they

prove the following important theorem:

Theorem 1. The interior equilibrium point Eðu0
1ðxÞ; u0

2ðxÞÞ of the system (12) and (4) in the domain W is globally as-
ymptotically stable, if,

i(i) 4a11a22 > ða12 þ a21Þ2
,

(ii) D11D22=D02
12 have a lower and upper threshold value, where

W ¼ fðu1; u2Þ : u1 � � and u2 > 0g: ð14Þ

The homogeneous (uniform) system of (10) is given by

s
o2u1

ot2
þ 1 � s

of1

ou1

� �
ou1

ot
¼ f1ðu1; u2Þ;

s
o2u2

ot2
þ 1 � s

of2

ou2

� �
ou2

ot
¼ f2ðu1; u2Þ:

9>>=
>>; ð15Þ
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At first we shall show that all the solutions of the system (15) are uniformly bounded. For this purpose, we have the

following theorem:

Theorem 2. All the solutions of the homogeneous system (15) which initiate in Rþ
2 are uniformly bounded, where

Rþ
2 ¼ fðu1; u2Þju1 > 0; u2 > 0g: ð16Þ

Proof. Define the function

W ¼ u1 þ u2: ð17Þ

The time derivative of (16) along the solutions of the homogeneous system (15) is

s
d2W
dt2

¼ c1u1

�
� a11u2

1 � a12u1u2


þ c2u2

�
� a21u1u2 � a22u2

2


� 1

�
� s

of1

ou1

�
ou1

ot
� 1

�
� s

of2

ou2

�
ou2

ot

and then

s
d2W
dt2

� sðc1 þ c2Þ
dw
dt

6 c1u1

�
� a11u2

1


þ c2u2

�
� a22u2

2


þ c1

ou1

ot
þ c2

ou2

ot

for k > 0, we have

s
d2W
dt2

� sðc1 þ c2Þ
dw
dt

þ kW 6 ðc1u1 � a11u2
1 þ ku1Þ þ ðc2u2 � a22u2

2 þ ku2Þ6
ðk þ c1Þ2

4a11

þ ðk þ c2Þ2

4a22

:

then, we can find a positive constant K > 0 such that

s
d2W
dt2

� sðc1 þ c2Þ
dw
dt

þ kW 6K:

Applying a theorem on differential inequality [19], we have

06W ðu1; u2Þ6Aþ B½er1 t þ er2t�;

where er1 t; er2t are the solutions of the equation

s
d2W
dt2

� sðc1 þ c2Þ
dw
dt

þ kW ¼ 0

and

r1 ¼
ðc1 þ c2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 þ c2Þ2 � 4k=s

q
2

;

r2 ¼
ðc1 þ c2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 þ c2Þ2 � 4k=s

q
2

and as t ! 1, we have 06W 6A. Hence all the solutions of the homogeneous system (15) that initiate in Rþ
2 are

confined in the region G ¼ ½ðx; yÞ 2 Rþ
2 : W < Aþ h; for any h > 0�. �

3. Local and global stability analysis of the cross-diffusional effect in a telegraph reaction diffusion Lotka–Volterra two

competitive system

To study the local stability analysis of telegraph reaction diffusion system (10) and (11), we must find the coexistence

solution of (10) which is given by

ðu0
1; u

0
2Þ ¼

c1a22 � c2a12

a11a22 � a12a21

;
c2a11 � c1a21

a11a22 � a12a21

� �
: ð18Þ
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Linearizing the system (10) around ðu0
1; u

0
2Þ, we get

jsk2I� ðkB� AÞ þDk2j ¼ 0;

where

D ¼
D11 0

0 D22

� �
; B ¼

1 � s of1

ou1

� �
0

0 1 � s of2

ou2

� �
0
B@

1
CA

ðu0
1
;u0

2
Þ

;

A ¼
c1 � 2a11u1 � a12u2 �a12u1

�a21u2 c2 � 2a21u1 � 2a22u2

� �
ðu0

1
;u0

2
Þ
:

Calculating the above determinant, we get

a21a12u0
1u

0
2 ¼ ðsk2 þ kð1 þ sa11u0

1Þ þ a11u0
1 þ D11k2Þðsk2 þ kð1 þ sa22u0

2Þ þ a22u0
2 þ D22k2Þ

which can be written as

s2k4 þ b1k
3 þ b2k

2 þ b3k þ b4 ¼ 0; ð19Þ

where

b1 ¼ s½ð1 þ sa11u0
1Þ þ ð1 þ sa22u0

2Þ�;
b2 ¼ s½ða22u0

2 þ D22k2Þ þ ða11u0
1 þ D11k2Þ� þ ð1 þ sa11u0

1Þð1 þ sa22u0
2Þ;

b3 ¼ ða22u0
2 þ D22k2Þð1 þ sa11u0

1Þ þ ða11u0
1 þ D11k2Þð1 þ sa22u0

2Þ;
b4 ¼ ða11a22 � a21a12Þu0

1u
0
2 þ a12a21u0

1k
2 þ a11D22u0

1k
2 þ a22D11u0

2k
2 þ D11D22k2:

ð20Þ

It is clear that bi > 0 8 i ¼ 1; 2; 3 and for tolerant competition (weak competition) case ða11a22 � a21a12Þ > 0, then

b4 > 0.

Hence, we may conclude that self-diffusion cannot alone generate spatial pattern in a two species telegraph reaction

diffusion tolerant competition model.

Now, to generate spatial pattern in a two species Lotka–Volterra model (10), we add a cross-diffusion term in the

first equation of that system. In this case the system take the new form

s
o2u1

ot2
þ 1 � s

of1

ou1

� �
ou1

ot
¼ D1

o2u1

ox2
þ o

ox
D12ðu1Þ

ou1

ox


 �
þ f1ðu1; u2Þ;

s
o2u2

ot2
þ 1 � s

of2

ou2

� �
ou2

ot
¼ D2

o2u2

ox2
þ f2ðu1; u2Þ;

9>>=
>>; ð21Þ

as in the case of the Lotka–Volterra two competition cross-diffusion system, we assume that

D12ðu1Þ ¼ D0
12

u1

�þ u1

� �
; � > 0 and very small

then D12ðu1Þ ’ D0
12 8 u1 > �. The population domain is given by Rþ

2 .

The characteristic equation of the system (21) in the population domain Rþ
2 is given by

s2k4 þ b1k
3 þ b2k

2 þ b3k þ b4

�
� a21D0

12u
0
2k

2

¼ 0; ð22Þ

where bi > 0 8 i ¼ 1; 2; 3; 4, are given by (20) and k is non-zero constant wave length parameter and 2pk is the period of

cosine.

For s sufficiently small and neglecting term of order s2, Eq. (22) reduces to the following form

k3 þ b2

b1

k2 þ b3

b1

k þ
b4 � a21D0

12u
0
2k

2
� 

b1

¼ 0: ð23Þ

Thus, the condition for local instability is

b2b3 < b4

�
� a21D0

12u
0
2k

2

b1

and then

D0
12 <

b4b1 � b2b3ð Þ
k2b1a21u0

2

) k2 <
b1b4 � b2b3ð Þ
D0

12a21u0
2b1

: ð24Þ
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Hence, we may conclude that for formation of biological pattern in telegraph Lotka–Volterra tolerant competitive

system, cross-diffusion term in either species is essential.

Definition 1. A property is global if it cannot be analyzed in an arbitrary small neighborhoods of a single point.

Theorem 3 (Lyapunov first theorem). Consider the system

dx
dt

¼ f ðxÞ; x 2 Rn

for which x0 is a fixed point. x0 is stable fixed point if there exists a function LðxÞ such that:

Lðx0Þ ¼ 0 and LðxÞ > 0 if x 6¼ x0 in some X about x0;

the function LðxÞ which satisfies these condition is called a Lyapunov function.

Now, to study the global stability analysis of the interior equilibrium point Eðu0
1ðxÞ; u0

2ðxÞÞ for the system (21), we

shall define the following Lyapunov function

V ðu1; u2Þ ¼ ð1 þ sð2a11u0
1 þ a12u0

2ÞÞ
Z R

0

u1



� u0

1 � u0
1 ln

u1

u0
1

� ��
dx

� ð1 þ sða21u0
1 þ 2a22u0

2ÞÞ
Z R

0

u2



� u0

2 � u0
2 ln

u2

u0
2

� ��
dx; ð25Þ

where u1 > 0, u2 > 0 and u1ðxÞ ¼ u0
1, u2ðxÞ ¼ u0

2.

It is easy to check that V ðu1; u2Þ is non-negative and V ðu1; u2Þ ¼ 0 iff u1ðxÞ ¼ u0
1; u2ðxÞ ¼ u0

2.

The following theorem is important to find out the criteria for global stability of the environmental pattern formed

by the system (21).

Theorem 4. The interior equilibrium point Eððu0
1ðxÞ; u0

2ðxÞÞ of the system (21) in the domain Rþ
2 is global asymptotically

stable if the rate of change of the Lyapunov function (25) is negative i.e., if the following conditions hold:

ii(i) 4k1k2a11a22 > ðk1a12 þ k2a21Þ2
,

i(ii) D11D22= D0
12

� 2
> k1u2=4k2u1 (have a lower and upper threshold value),

(iii) the characteristic time constant s is positive,

where k1 and k2 are two arbitrary positive constants.

Proof. We can write system (21) as follows

ð1 þ sð2a11u0
1 þ a12u0

2ÞÞ
ou1

ot
¼ D1

o2u1

ox2
þ o

ox
D12ðu1Þ

ou1

ox


 �
� s

o2u1

ot2
þ f1ðu1; u2Þ;

ð1 þ sð2a21u0
1 þ a22u0

2ÞÞ
ou2

ot
¼ D2

o2u2

ox2
� s

o2u2

ot2
þ f2ðu1; u2Þ;

ð26Þ

Calculating the rate of change of the Lyapunov function (25), along the solution of (26), we have

dV
dt

¼ 1
�

þ sð2a11u0
1 þ a12u0

2Þ


	
Z R

0

ðu1



� u0

1Þ
�
� a11u1 � a12u2 þ

D11

u1

o2u1

ox2
þ D0

12

u1

o2u2

ox2
þ a11u0

1 þ a12u0
2

�
dx� s

o2u1

ot2

�
dx

� ð1 þ sða21u0
1 þ 2a22u0

2ÞÞ
Z R

0

ðu2



� u0

2Þ
�
� a21u1 � a22u2 þ

D22

u2

o2u2

ox2
þ a21u0

2 þ a22u0
2

�
dx� s

o2u2

ot2

�
dx: ð27Þ

From Theorem 2, we have ðu0
1 þ u0

2Þ is bounded, then there exist two positive constants k1 and k2 such that

ð1 þ sð2a11u0
1 þ a12u0

2ÞÞ6 k1; ð1 þ sð2a21u0
1 þ a22u0

2ÞÞ6 k2 ð28Þ
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then,

dV
dt

6 �
Z R

0

a11k1ðu1

n"
� u0

1Þ
2 þ ðk1a12 þ k2a21Þðu1 � u0

1Þu2 � u0
2Þ þ a22k2ðu2 � u0

2Þ
2
o

þ
(

� k1

D11

u1

ou1

ox
ou0

1

ox
� k1

D0
12

u1

ou1

ox
ou0

2

ox
� k2

D22

u2

ou2

ox
ou0

2

ox
þ k1D11

u0
1

u2
1

ou1

ox

� �2

þ k1D0
12

u0
1

u2
1

ou1

ox
ou0

2

ox

þ k2D22

u0
2

u2
2

ou2

ox

� �2
)

þ s k1

o2u1

ot2

�
þ k2

o2u2

ot2

�#
dx: ð29Þ

We need all the solutions ended at the interior equilibrium, hence we must have u1ðx; tÞP u0
1ðxÞ, u2ðx; tÞP u0

2ðxÞ then

u0
1

u2
1

6
1

u1

;
u0

2

u2
2

6
1

u2

: ð30Þ

Using (29) and (30) we get

dV
dt

6 �
Z R

0

a11k1ðu1

n"
� u0

1Þ
2 þ ðk1a12 þ k2a21Þðu1 � u0

1Þðu2 � u0
2Þ þ a22k2ðu2 � u0

2Þ
2
o

þ
(

� k1

D11

u1

ou1

ox
ou0

1

ox
� k1

D0
12

u1

ou1

ox
ou0

2

ox
� k2

D22

u2

ou2

ox
ou0

2

ox
þ k1D11

1

u1

ou1

ox

� �2

þ k1D0
12

1

u1

ou1

ox
ou0

2

ox

þ k2D22

1

u2

ou2

ox

� �2
)

þ s k1

o2u1

ot2

�
þ k2

o2u2

ot2

�#
dx: ð31Þ

The first and second term of (31) in the curly brackets can be expressed in the form ð�XTAXÞ and ð�YTBYÞ respec-

tively, where

Y ¼ ou1

ox
;
ou2

ox
;
ou0

1

ox
;
ou0

2

ox

� �
; A ¼

k1a11

ðk1a12 þ k2a21Þ
2

ðk1a12 þ k2a21Þ
2

k2a22

0
BB@

1
CCA;

X ¼ u1

�
� u0

1; u2 � u0
2


; B ¼

k1D11

u1

k1D0
12

2u1

� k1D11

2u1

0

k1D0
12

2u1

k2D22

u2

� k1D0
12

2u1

� k2D22

2u2

� k1D11

2u1

� k1D0
12

2u1

0 0

0 � k2D22

2u2

0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

and then

dV
dt

6 �
Z R
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dx: ð32Þ

The quantity dV =dt is negative definite if the symmetric matrices A and B are positive definite, and the time constant

s > 0. A is positive definite if 4k1k2a11a22 > ðk1a12 þ k2a21Þ2
and B is positive definite if the second principle minor

determinant of B is positive definite if

k2D11D22

k1 D0
12ð Þ2

>
u2

4u1

:

Since both u1, u2 are bounded, then the above relation is true if D11D22=ðD0
12Þ

2 > k1u2=4k2u1, i.e., D11D22=ðD0
12Þ

2
have a

lower and upper bound, hence B is positive definite if condition (ii) hold it is clear that, the 1st, 2nd and the 4th

principles of the determinant of B are always positive. �
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4. Conclusions

The boundedness of the homogeneous system of our suggested model are studied and we found that, it is uniformly

bounded in the domain of solutions. Also, local stability analysis of the telegraph reaction diffusion system was studied.

We conclude that, self-diffusion cannot alone generate spatial pattern in two species telegraph reaction diffusion tol-

erant competition model. After adding cross-diffusion term in either species, we found that, biological patterns are

formed. An important criteria for global stability of the environmental pattern formed by the system are found.
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