Q. No	1	2	3	4	5	6	7	8
Answer								

Q.1. Identify the differential equation: $(x^2 + 1)dy = (x - xy)dx$. Assume that y = f(x). (a) Linear, (b) Separable, (c) Linear and separable, (d) None of these

Q.2. The differential equation: $(e + \exp(1 + \frac{x}{y}))y' = 5$ is: (a) Homogeneous, (b) Linear in x, (c) Linear in y, (d) Exact

Q.3. The DE: xy'+y = 0 is

(a) Exact, linear and homogeneous, (b) Exact only, c) Linear only, (d) Homogeneous only

Q.4. A general separable differential equation is a DE that can be written in the form (a) f(x, y)dy = dx, (b) y' = f(x, y), (c) f(x)dx - g(y)dy = 0, (d) f(x, y)dy = g(y)dx.

Q.5. Identify the differential equation $x^2(y'')^4 + (y')^5 = 1 + x^4$. Assume that y = f(x). (a) 2^{nd} order, 3^{rd} degree, (b) 2^{nd} degree, 2^{nd} order, (c) 2^{nd} order, 4^{th} degree, (d) 2^{nd} order, 5^{th} degree.

Q.6. Identify the DE $(y + e^{-y})y' = \sin x$, Assume that y = f(x). (a) Linear, (b) Separable, (c) Linear and separable, (d) None of these.

Q.7. For the DE $(\cos 2y + x)dx + cx\sin(2y)dy = 0$ to be exact, the value of c must be (a) c = 1, (b) c = 2, (c) c = -1, (d) -2.

Q.8. For the DE $\frac{dy}{dx} + (2x + \frac{1}{x})y = x^2$, the integrating factor is (a) x^2 , (b) $x \ln x^2$, (c) xe^{x^2} , (d) None of these Q. 9. Determine whether the following initial value problem has a unique solution [6]

$$\frac{dy}{dx} = x + \sqrt{y - 1}, \quad y(2) = 1$$

Q.10. Find *m* such that y^m will be an integrating factor for the DE: $(y^2 + 2xy)dx = x^2dy$. [8]

Q.11. Find the family of orthogonal trajectories of the family of curves: $x^2 - y^2 = cx$. [6]

Q.12. The population of bacteria in a culture grows at a rate proportional to the number of bacteria present at time t. After 3 hours it is observed that 400 bacteria are present. After 10 hours 2000 bacteria are present. What was the initial number of bacteria. [8]