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Abstract

The generalized time-delayed Burgers equation is introduced and
the improved tanh-function method is used to construct exact multi-
ple soliton and triangular periodic solutions. The obtained solutions
reduces to the generalized and classical Burgers equations as a special
cases.
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1 Introduction

A number of nonlinear phenomena in many branches of sciences such as
physical [1], chemical, economical [2] and biological processes [3,4] are de-
scribed by the interplay of reaction and diffusion or by the interaction be-
tween convection and diffusion. One of the well known partial differential
equations which governs a wide variety of them is Burgers equation which
provides the simplest nonlinear model of turbulence [5]. The existence of
relaxation time or delay time is an important feature in reaction diffusion
and convection diffusion systems [6-8].

The generalized time-delayed Burgers equation can be derived by a sim-
ilar manner to that presented in [6]. It takes the following form:

Tuy + [1 — T fu]ur = Upe — puiuy, (1)

where 7, p, are any real numbers and s € N.

It is clear that when p = s = 1, equation (1) reduces to the form of the
classical Burgers equation [5]. Recently, many methods have been used to
find exact solutions of nonlinear partial differential equations, such as the



tanh function method [9-13], Jacobi elliptic function method [14], Simplest
equation method [15], unified algebraic method [16], and the factorization
method [17-19] .

The paper is organized as follows: In Section 2, the improved tanh func-
tion method is presented. In Section 3, we use the improved tanh-function
method to obtain multiple soliton and triangular periodic solutions of the
generalized time-delayed Burgers equation. Section4, is devoted for the con-
clusion.

2 The improved tanh-function method
1. Consider a general form of nonlinear partial differential equation (PDE )
N (u,ug, Uy Uggy -+ ) = 0. (2)

2. We introduce the wave variable ¢ = k(x — wt) to find the travelling wave
solution, then

’LL(:L’,t) = U(<)7 (3)

where k and w are the wave number and the wave speed respectively. Thus,
we have

Up = _kWU,(C)a Ut = k2W2U”(<)v Uy = kU/(C)> Uy = kQU,(C)a T
(4)
and the PDE (2) reduces to an ordinary differential equation (ODE ) given
by,
N, U U", ) =0. (5)

3. If all terms of (5) contain derivatives in ¢, then by integrating this equa-
tion and taking the constant of integration to be zero, we obtain a simplified

ODE.
4. Introduce

U)=> aF'(Q), (6)
=0

where n is a positive integer that can be determined by balancing the linear
term with the nonlinear term in equation (5); a; , @ = 1,2,--- ,n, are
parameters to be determined and F'({) is a solution of the Riccati equation
that tanh function satisfies, i.e.

F'=CF?% 4 A, (7)

where A, C are constants. The relations between values of A, C' and corre-
sponding F'(¢) in (7) is given in the following table.



Case | A | C F(¢)
1 % —% coth¢ +cosh(, tanh ¢ +Isech ¢, I = /—1
2 % % sec( +tan(
3 —2 1 -3 (csc ¢ Fcot ()
4 1 | -1 tanh ¢, coth ¢
5 1 tan ¢
6 -1 -1 cot ¢

5. Introducing (7) into (6) and then substituting (6) into equation (5) yields
a set of algebraic equations involving a;, (i = 1,2,--- .n), k, w because all
coefficients of F*(¢) have to vanish. Having determined these parameters,
we obtain an analytic solutions in closed form.

3 Analytic solutions of the generalized time-delayed
Burgers equation

The time-delayed Burgers equation is given by
Tug + up + putly — Ugpy = 0. (8)

In order to obtain travelling wave solutions of (8), we set

Substituting (9) into (8), we find that

Tw? — DE2U" — kwU' + pkUSU' =0, 1w’ > 1. 10
(

Balancing U” with U*U’ gives n = 1/s which is not an integer as s # 1.
But we need the balancing number to be a positive integer so as to apply
the ansatz (6) and (7). We make a transformation

U=Vs. (11)
Using this transformation, equation (10) changes to the form:

1

(Tw? = DEAV'V + (= — )V = kwV V' 4+ pkV2V' = 0. (12)
S

Balancing V'2 with V2V gives n = 1. Therefore, we may choose the following
ansatz:

V(C) = ap + a1 F(C). (13)
Then
U(C) = [ao + a1 F(C)]* . (14)



Now, substituting (13) into (6) along with equation (7) and using Mathemat-
ica, yields a system of equations with respect to F*. Setting the coefficients
of F' in the resulting system of equations to zero, we can deduce the fol-
lowing set of algebraic polynomials with respect to the unknowns ag, a1,

namely:

A2a2 A2 w2a2
—Awagay + Apaday + A%a? — =L 4 A%rw?a? + el
s s
—2A4Capa; + 2Aw*rCagay — Awa% + 2Apaga% =
—2C%apay + 2C%*rw?aga; — Cwa% + 20]9&0(1% =
C%*w?ra? n 2ACw?a?

—Cwagay + C’pa%al — 4 Apai’ -
C’Qa% i C2w27a%

S S

—C?%a? — + C?w?ral + Cpa? =

Solving the above system of equations by using Mathematica, we

find the

following set of solutions that correspond to some values of A and C, see

Table 1.
A1 1
Case 1: A=3,C = —3,
(1+s)w (1+s)w Sw
ao % ap =+ 2p M :F(nﬂ )

CaseQ:A:C:%,

(1+s)w (14 s)wl B swl

ap = % ay =+

Case 3: A=C= —%,

(1+s)w (14 s)wl swl
B ap = F—F5— =F ——

Case 4: A=1,C=-1,

ag =

(14 s)w (1+s)w Sw
a0 2p a 2 ! 2(tw? —1)
Case b: A=C =1,
(1+s)w (1+s)w swl
= = = —_— k pum— —_—
a0 2p “=7 3 2(Tw? — 1)
Case 6: A=C = —1,
(14 s)w (14 s)wl swl
= —_— = _— k — -
ao % ar =+ % 6 ?2(7002 )

(18)

(19)

(21)



Substituting (16) - (21) into (14) and using special solutions of equation
(7), according to the cases introduced in Table 1, we obtain the following
multiple soliton and triangular periodic solutions of equation (8),

1/s
ui(z, t) = [(1 ;ps)w + ;ps)w(tanhc + isech g)] L =k (z—wi),
(22)
1/s
ug(x,t) = [(1 —12—p3)w ¥ ( Z;)M(cothg + coch (] , ¢ =ke(z—wt),
(23)
1/s
us(z, t) = [(1 J;p@“ L4 z;)‘” tanh(} o C—hs(m—wb), (24)
1/s
ug(x,t) = [(1 —|2—ps)w + (1+s)w coth C] , (=ky(z—wt), (25
1/s
us(, 1) = [(1 e tanc] L C=hs@—wt),  (20)
1/s
uglie, ) = [“ S c] L (=hs—wt).  (27)

When 7 — 0, equations (22)-(27), is reduced to the solutions of the
generalized Burgers equation:

[+ s)w (14 s)w ) 1/s _
ui(x,t) = { o F o (tanh ¢ &+ i sech C)] , (=tsw(r—wt),
(28)
1/s
ug(z,t) = [(1 —;—ps)w T L+ S)WI(cothC =+ coch C] , ¢ =Fswl (z —wt),
(29)
1/s
us(x,t) = {(1 —;ps)w ¥ C ZZ)WI tanh C] ) ¢ =xswl (z —wt), (30)
1/s
ug(z,t) = Fl 42—ps)w + (1 ; 8w coth C} , ¢ =Fsw(x—wt), (31)
1/s
o) = |32 LE M ) T g -wn . (2
1/s
ug(z,t) = [(1 —gps)w (a —;;)WI cot C] , ¢ =dswl (z—wt). (33)



In equations (28)-(33), putting s = p = w = 1 , we obtain the solutions

of the classical Burgers equation [5]:

4

ui(z,t) =1 F (tanh ¢ £ isech (), (==x(x—1), (34)
ug(x,t) = 1 F I(coth ¢ £ coch (), (=FI(x—1t), (35)

us(x,t) = 1 F I tanh(, (==xI(x—1t),
ug(z,t) =1+ coth(, (=F(z—-1),

us(z,t) = 1Ftan(,  (=FI(r—1t),

ug(xz,t) =1F I cot ¢, (==+I(x—1t).

Conclusions

We have presented the time-delayed Burgers differential equation and we
have shown that this equation can be solved exactly for finite arbitrary
time-delay by using the improved tanh-function method. Also, we obtained
multiple soliton and triangular periodic solutions of the equation. More
solutions of the generalized and classical Burgers equation are obtained as
a special cases.
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