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Abstract

The generalized time-delayed Burgers equation is introduced and
the improved tanh-function method is used to construct exact multi-
ple soliton and triangular periodic solutions. The obtained solutions
reduces to the generalized and classical Burgers equations as a special
cases.
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1 Introduction

A number of nonlinear phenomena in many branches of sciences such as
physical [1], chemical, economical [2] and biological processes [3,4] are de-
scribed by the interplay of reaction and di¤usion or by the interaction be-
tween convection and di¤usion. One of the well known partial di¤erential
equations which governs a wide variety of them is Burgers equation which
provides the simplest nonlinear model of turbulence [5]. The existence of
relaxation time or delay time is an important feature in reaction di¤usion
and convection di¤usion systems [6-8].

The generalized time-delayed Burgers equation can be derived by a sim-
ilar manner to that presented in [6]. It takes the following form:

�utt + [1� �fu]ut = uxx � pusux; (1)

where � , p, are any real numbers and s 2 N:
It is clear that when p = s = 1, equation (1) reduces to the form of the

classical Burgers equation [5]. Recently, many methods have been used to
�nd exact solutions of nonlinear partial di¤erential equations, such as the
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tanh function method [9-13], Jacobi elliptic function method [14], Simplest
equation method [15], uni�ed algebraic method [16], and the factorization
method [17-19] .

The paper is organized as follows: In Section 2, the improved tanh func-
tion method is presented. In Section 3, we use the improved tanh-function
method to obtain multiple soliton and triangular periodic solutions of the
generalized time-delayed Burgers equation. Section4, is devoted for the con-
clusion.

2 The improved tanh-function method

1. Consider a general form of nonlinear partial di¤erential equation (PDE )

N(u; ut; ux; uxx; � � � ) = 0: (2)

2. We introduce the wave variable � = k(x� !t) to �nd the travelling wave
solution, then

u(x; t) = U(�); (3)

where k and ! are the wave number and the wave speed respectively. Thus,
we have

ut = �k!U 0(�), utt = k
2!2U 00(�), ux = kU

0(�), uxx = k
2U 0(�), � � � ;

(4)
and the PDE (2) reduces to an ordinary di¤erential equation (ODE ) given
by,

N(U;U 0; U 00; � � � ) = 0: (5)

3. If all terms of (5) contain derivatives in �, then by integrating this equa-
tion and taking the constant of integration to be zero, we obtain a simpli�ed
ODE.
4. Introduce

U(�) =

nX
i=0

aiF
i(�); (6)

where n is a positive integer that can be determined by balancing the linear
term with the nonlinear term in equation (5); ai , i = 1; 2; � � � ; n, are
parameters to be determined and F (�) is a solution of the Riccati equation
that tanh function satis�es, i.e.

F 0 = CF 2 +A; (7)

where A, C are constants. The relations between values of A, C and corre-
sponding F (�) in (7) is given in the following table.
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Case A C F (�)

1 1
2 �1

2 coth � � cosh �, tanh � �I sech �, I =
p
�1

2 1
2

1
2 sec � � tan �

3 �1
2 �1

2 (csc � � cot �)
4 1 �1 tanh �, coth �

5 1 1 tan �

6 �1 �1 cot �

5. Introducing (7) into (6) and then substituting (6) into equation (5) yields
a set of algebraic equations involving ai, (i = 1; 2; � � � :n), k, ! because all
coe¢ cients of F i(�) have to vanish. Having determined these parameters,
we obtain an analytic solutions in closed form.

3 Analytic solutions of the generalized time-delayed
Burgers equation

The time-delayed Burgers equation is given by

�utt + ut + pu
sux � uxx = 0: (8)

In order to obtain travelling wave solutions of (8), we set

u(x; t) = U(�); � = k(x� !t): (9)

Substituting (9) into (8), we �nd that

(�!2 � 1)k2U 00 � k!U 0 + pkU sU 0 = 0, �!2 > 1: (10)

Balancing U 00 with U sU 0 gives n = 1=s which is not an integer as s 6= 1.
But we need the balancing number to be a positive integer so as to apply
the ansatz (6) and (7). We make a transformation

U = V
1
s : (11)

Using this transformation, equation (10) changes to the form:

(�!2 � 1)k2[V 00V + (1
s
� 1)V 02]� k!V V 0 + pkV 2V 0 = 0: (12)

Balancing V 02 with V 2V 0 gives n = 1: Therefore, we may choose the following
ansatz:

V (�) = a0 + a1F (�): (13)

Then
U(�) = [a0 + a1F (�)]

1=s : (14)
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Now, substituting (13) into (6) along with equation (7) and using Mathemat-
ica, yields a system of equations with respect to F i. Setting the coe¢ cients
of F i in the resulting system of equations to zero, we can deduce the fol-
lowing set of algebraic polynomials with respect to the unknowns a0, a1,
namely:

�A!a0a1 +Apa20a1 +A2a21 �
A2a21
s

+A2�!2a21 +
A2�!2a21

s
= 0;

�2ACa0a1 + 2A!2�Ca0a1 �A!a21 + 2Apa0a21 = 0;

�2C2a0a1 + 2C2�!2a0a1 � C!a21 + 2Cpa0a21 = 0; (15)

�C!a0a1 + Cpa20a1 �
C2!2�a21

s
+
2AC!2a21

s
+Apa31 = 0;

�C2a21 �
C2a21
s

+
C2!2�a21

s
+ C2!2�a21 + Cpa

3
1 = 0:

Solving the above system of equations by using Mathematica, we �nd the
following set of solutions that correspond to some values of A and C, see
Table 1.

Case 1: A = 1
2 , C = �

1
2 ;

a0 =
(1 + s)!

2p
; a1 = �

(1 + s)!

2p
; k1 = �

s!

(�!2 � 1) : (16)

Case 2: A = C = 1
2 ;

a0 =
(1 + s)!

2p
; a1 = �

(1 + s)!I

2p
; k2 = �

s!I

(�!2 � 1) : (17)

Case 3: A = C = �1
2 ;

a0 =
(1 + s)!

2p
; a1 = �

(1 + s)!I

2p
; k3 = �

s!I

(�!2 � 1) : (18)

Case 4: A = 1; C = �1;

a0 =
(1 + s)!

2p
; a1 = �

(1 + s)!

2p
; k4 = �

s!

2(�!2 � 1) : (19)

Case 5: A = C = 1;

a0 =
(1 + s)!

2p
; a1 = �

(1 + s)!

2p
; k5 = �

s!I

2(�!2 � 1) : (20)

Case 6: A = C = �1;

a0 =
(1 + s)!

2p
; a1 = �

(1 + s)!I

2p
; k6 = �

s!I

2(�!2 � 1) : (21)
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Substituting (16) - (21) into (14) and using special solutions of equation
(7), according to the cases introduced in Table 1, we obtain the following
multiple soliton and triangular periodic solutions of equation (8),

u1(x; t) =

�
(1 + s)!

2p
� (1 + s)!

2p
(tanh � � i sech �)

�1=s
; � = k1 (x� !t) ;

(22)

u2(x; t) =

�
(1 + s)!

2p
� (1 + s)!I

2p
(coth � � coch �

�1=s
; � = k2 (x� !t) ;

(23)

u3(x; t) =

�
(1 + s)!

2p
� (1 + s)!I

2p
tanh �

�1=s
; � = k3 (x� !t) ; (24)

u4(x; t) =

�
(1 + s)!

2p
� (1 + s)!

2p
coth �

�1=s
; � = k4 (x� !t) ; (25)

u5(x; t) =

�
(1 + s)!

2p
� (1 + s)!

2p
tan �

�1=s
; � = k5 (x� !t) ; (26)

u6(x; t) =

�
(1 + s)!

2p
� (1 + s)!I

2p
cot �

�1=s
; � = k6 (x� !t) : (27)

When � ! 0, equations (22)-(27), is reduced to the solutions of the
generalized Burgers equation:

u1(x; t) =

�
(1 + s)!

2p
� (1 + s)!

2p
(tanh � � i sech �)

�1=s
; � = �s! (x� !t) ;

(28)

u2(x; t) =

�
(1 + s)!

2p
� (1 + s)!I

2p
(coth � � coch �

�1=s
; � = �s!I (x� !t) ;

(29)

u3(x; t) =

�
(1 + s)!

2p
� (1 + s)!I

2p
tanh �

�1=s
; � = �s!I (x� !t) ; (30)

u4(x; t) =

�
(1 + s)!

2p
� (1 + s)!

2p
coth �

�1=s
; � = �s! (x� !t) ; (31)

u5(x; t) =

�
(1 + s)!

2p
� (1 + s)!

2p
tan �

�1=s
; � = �s!I (x� !t) ; (32)

u6(x; t) =

�
(1 + s)!

2p
� (1 + s)!I

2p
cot �

�1=s
; � = �s!I (x� !t) : (33)
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In equations (28)-(33), putting s = p = ! = 1 , we obtain the solutions
of the classical Burgers equation [5]:

u1(x; t) = 1� (tanh � � i sech �); � = � (x� t) ; (34)

u2(x; t) = 1� I(coth � � coch �); � = �I (x� t) ; (35)

u3(x; t) = 1� I tanh �; � = �I (x� t) ; (36)

u4(x; t) = 1� coth �; � = � (x� t) ; (37)

u5(x; t) = 1� tan �; � = �I (x� t) ; (38)

u6(x; t) = 1� I cot �; � = �I (x� t) : (39)

4 Conclusions

We have presented the time-delayed Burgers di¤erential equation and we
have shown that this equation can be solved exactly for �nite arbitrary
time-delay by using the improved tanh-function method. Also, we obtained
multiple soliton and triangular periodic solutions of the equation. More
solutions of the generalized and classical Burgers equation are obtained as
a special cases.
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