First Midterm Exam Of Math 201, Spring of 1419-1420

Duration one and half hour

1. A- Describe the set of points in the xy-plane at which f is continuous

$$f(x,y) = \frac{xy}{x - 5y}$$

B- If $f(x,y) = x^2 + 9y^2$, sketch the **level curves** of f for k = 0, 4.

C- Find the following limits if it exists:

(i)
$$lim_{(x,y)\to(-1,0)} \frac{(x^2-1)(y+2)}{(x+1)(y-5)}$$
 and (ii) $lim_{(x,y)\to(1,2)} \frac{xy-2x-y+2}{x^2+y^2-2x-4y+5}$

2. **A-** Let

$$f(x,y) = \begin{cases} \frac{9x^3y}{3x^4 + 4y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a) Prove that $f_x(0,0)$ and $f_y(0,0)$ exists. (Use the definition of f_x and f_y .)
- (b) Is f differentiable at (0,0). Justify your answer.

B- Let $f(x,y) = sin(x+y)e^{x-y}$, show that

$$(f_x)^2 + (f_y)^2 = 2e^{(2x-2y)}.$$

C- Let w = f(u, v), where $u = t \sin(x)$ and $v = t \cos(x)$. Compute $\partial^2 w / \partial x^2$.

- 3. **A-** Let $V(r,h) = \pi r^2 h$. If r changes from 2 to 2.5 and h changes from 4 to 3.7. Use the differential to approximate the change in V.
 - **B-** Find the **maximum** and **minimum** values of the function

$$f(x,y) = 3x^2 - 4y + 2y^2 + 1$$

1

on the region $R = \{(x, y) | x^2 + y^2 \le 16\}.$

First Midterm Exam Of Math 201, Fall of 1420-1421

Duration one and half hour

1. A- Describe the set of points where f is continuous

$$f(r,s) = \sqrt{3 - 2r} - e^{r^2/6s}$$

B- If $z = f(x, y) = 4x^2 + y^2$, sketch the **level curves** of f, for k = 0, 4, 16.

C- Find the following limits if it exists:

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$$
 and (ii) $\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz}{x^2+y^2+z^2}$
(iii) $\lim_{(x,y)\to(-1,2)} \frac{xy-2x}{xy-6-2x+3y}$.

2. **A-** Let

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^4 + y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a) Prove that $f_x(0,0)$ and $f_y(0,0)$ exists. (Use the definition of f_x and f_y .)
- (b) show that f is not continuous at (0,0)
- (c) show that f is not differentiable at (0,0).

B- If w(x,y) = cos(x-y) + ln(x+y), show that

$$w_{xx} - w_{yy} = 0$$

3. A- Use the differential to approximate the change in $f(x,y) = x^2 - 2xy + 3y^2$, if (x,y) changes from (1,2) to (1.03,1.99).

B- If w = f(x, y), $x = r \cos \theta$ and $y = r \sin \theta$, show that

$$\frac{\partial w}{\partial x} = (\cos \theta) \frac{\partial w}{\partial r} - (\frac{\sin \theta}{r}) \frac{\partial w}{\partial \theta}.$$

Good Luck

Second Midterm Exam Of Math **201**, Fall of 1420-1421 Duration Two hours

1. Find the **absolute extrema** (absolute maximum and absolute minimum) of

$$f(x,y) = x^2 - 6x + y^2 - 4y$$

on the closed region bounded by the x- axis, y- axis and the line x + y = 7.

2. Evaluate the double integral

$$\int_{0}^{1} \int_{\sqrt{X}}^{1} \sin(y^{3} + 1) dy \, dx.$$

3. A- Find the area of the region bounded by the graphs of $5x = y^2 - 25$ and x + y = 5, using the double integral and sketch the region.

B- Sketch the region bounded by the graphs of the equations $z = x^2$, z = 4, y = 0 and y + z = 4. Use the **triple integral** to find its volume.

4. A- Determine whether the following sequences **converge** or **diverge**, if it converges then find the **limit**

(1)
$$\left\{ \frac{3}{n} + (-3)^n \right\}$$
, (2) $\left\{ (-1)^n \frac{3+n}{5n^2} \right\}$, (3) $\left\{ (-1)^n \frac{\ln(n)}{n} \right\}$.
(4) $\left\{ n^{1/n} \right\}$, (5) $\left\{ \frac{\cos(n\pi)}{\sqrt{n}} \right\}$.

B- Answer True or False. Justify your answer:

- (a) Every monotonic sequence converges.
- (b) Every convergent sequence is monotonic.
- (c) If the series $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
- (d) If R > 4, then $\lim_{n \to \infty} \frac{1}{R^n} = 0$
- (e) Sum of two divergent sequences is a divergent sequence.

3

Final Exam Of Math 201, Spring of 1423-1424

Duration: Three Hours

1. A- Find the following limits if it exists;

1)
$$\lim_{(x,y)\to(2,1)} \frac{x^2 - 4x + 4}{(x-2)(y-1)}$$
, 2) $\lim_{(x,y)\to(0,0)} \left[\frac{xy}{\sqrt{x^2 + y^2}} + 3e^{x+y} \right]$.

B- Let
$$f(x,y) = \begin{cases} \frac{xy^2}{y^3 + x^3}, & y \neq -x \\ 0, & y = -x \end{cases}$$

- 1- Show that $f_x(0,0)$ and $f_y(0,0)$ exist.
- 2- Is f differentiable at (0,0), (1,1), justify.
- C- Let $z = e^{-t} \cos(x/\pi)$. Show that

$$\frac{\partial z}{\partial t} = \pi^2 \frac{\partial^2 z}{\partial x^2}.$$

- 2. **A-** Use the differential to approximate the change in the function $w = f(x, y, z) = x^2 \ln(z^2 + y^2)$ as (x, y, z) changes from (1, 2, 3) to (0.8, 1.78, 3.1).
 - $\ensuremath{\mathbf{B}\text{-}}$ Find the local extrema and saddle points of the function

$$f(x,y) = x^3 - 3xy + y^3.$$

 ${\bf C}\text{-}$ Change the integral to cylinderical coordinates then evaluate it;

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{(x^2+y^2)^2}^{1} x^2 \, dz \, dy \, dx.$$

D- Evaluate the integral

$$\int_0^8 \int_{x^{1/3}}^2 \frac{dy \, dx}{v^4 + 1}.$$

3. A- Determine whether the following series are absolutely convergent, conditionally convergent or divergent:

$$1)\sum_{n=1}^{\infty} \frac{1+\sin(n)}{n^2}$$

1)
$$\sum_{n=1}^{\infty} \frac{1 + \sin(n)}{n^2}$$
 2) $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n\sqrt{\ln n}}$

$$3) \sum_{n=1}^{\infty} \frac{n!}{\ln(n+1)}$$

3)
$$\sum_{n=1}^{\infty} \frac{n!}{\ln(n+1)}$$
 4) $\sum_{n=0}^{\infty} \frac{(2n+3)^2}{(n+1)^3}$

B- Find the interval and radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{\ln(n)}{e^n} (x - e)^n.$$

- C- Find the Maclaurin series for the function $f(x) = e^x$, for all $x \in \mathbf{R}$, then show that the series represents the function $f(x) = e^x$ for all x, i.e show that $\lim_{n} R_n(x) = 0.$
- **D-** Approximate the integral

$$\int_0^1 \sqrt{x} e^{-x^2} dx$$

to three decimal places.

4. **A-** Prove the following:

- If $\sum a_n x^n$ has a radius of convergence r, then the series $\sum a_n x^{2n}$ has a radius of convergence \sqrt{r} .
- If $\sum a_n$ is absolutely convergent series, then $\sum a_n x^n$ is absolutely convergent for all $x \in [-1, 1]$.

B- The following questions are extra credits:

- 1- Let $\{a_n\}$, $a_n \neq 0$ for all n, be a divergent sequence, give an example to show that $\{1/a_n\}$ is not necessarily a convergent sequence.
- 2- Let $\sum a_n$ and $\sum b_n$ be two convergent series. Give an example to show that $\sum a_n b_n$ is not necessarily a convergent series.

Good Luck.