
ABSTRACT

Background and Purpose: The usefulness of Bleo-
mycin (BLM) as an important antineoplastic drug is usually
limited to the development of dose and time-dependent
interstitial pneumonitis and pulmonary fibrosis. This study
has been initiated to investigate the possible protective
effects of acetyl-L-carnitine (AC) against BLM-induced
lung toxicity at an early stage of its development.

Material and Methods: A total of 40 male Sprague-
Dawley rats weighing from 200-250g each, were divided
into 4 groups of 10 animals each. The first group received
a daily i.p. injection of normal saline (0.5ml/200gm body
weight) for 5 consecutive days and served as a control.
Animals in the second, third and fourth groups were daily
injected intraperitoneally (i.p.) with BLM (15mg/kg body
weight), AC (250mg/kg body weight) and AC (250mg/kg)
2 hrs before BLM (15mg/kg) each for 5 consecutive days,
respectively.

Results: Treatment of rats with BLM (15mg/kg)
resulted in a significant 3.4 and 2.9 folds increase in
malondialdehyde (MDA) and nitric oxide (NO) production
in lung tissue, respectively and a significant 39%, 35%,
54% and 44% decrease in reduced glutathione (GSH),
superoxide dismutase (SOD), glutathione peroxidase
(GSHPx) and adenosine triphosphate (ATP), respectively
as compared to the control group. Treatment of rats with
AC did not lead to any significant change in the mentioned
biochemical parameters in the lung tissue. Administration
of AC two hours before BLM attenuated BLM-induced
increase in MDA and NO and the decrease in GSH, SOD,
GSHPx and ATP in lung tissue.

Conclusion: The present data suggests that the pro-
tective effect of AC against BLM-induced acute lung
injury could be, at least in part, due to its free radical
scavenging properties with the consequent improvement
in mitochondrial function and ATP production.
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INTRODUCTION

Bleomycin, a glycopeptide antibiotic, is an
anticancer drug with broad-spectrum antineo-
plastic activity against different human tumors
including cancers of head and neck, oesophageal
carcinoma, malignant lymphomas, testicular
carcinoma and malignant pleural effusions [1].
BLM has a wide range of toxicity and the lungs
are the main target organ for its adverse effects.
The optimal clinical usefulness of BLM in
cancer chemotherapy is usually limited due to
the development of dose and time-dependent
interstitial pneumonitis and pulmonary fibrosis
[2]. The manifested lung toxicity of BLM is
greatly affected by the total dose of the drug,
the route of its administration and the age of
the cancer patient [3]. The cause of BLM-
induced pulmonary toxicity is not fully explored
and seems to be multifactorial. Several mecha-
nisms have been proposed, including a rise in
the level of tumor necrosis factor-alfa, genera-
tion of reactive oxygen species such superoxide
anion and hydroxyl radicals [4-7], stimulation
of endothelial cell transforming growth factor-
B1 [8,9], depletion of NAD (nicotinamide dinu-
cleotide) and ATP [10], DNA damage and apop-
tosis in the lung [11], and the possible involve-
ment of platelet activating factor [12,13].

Acetyl-L-carnitine is a naturally occurring
short chain derivative of L-carnitine which is
synthesized endogenously in human brain, liver
and kidney by the enzyme acetyl carnitine trans-
ferase or obtained from dietary sources [14]. L-
carnitine and its short chain derivatives are
essential cofactors for mitochondrial transport
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and oxidation of long chain fatty acids and also
act as scavengers of oxygen free radicals in
mammalian tissues [15]. AC facilitates the uptake
of acetyl-CoA into the mitochondria during
fatty acid oxidation, enhances acetylcholine
production, and stimulates protein and mem-
brane phospholipids synthesis. AC has antiox-
idant activity towards oxidative stress via an
inhibition of the increase in lipid hydroperoxi-
dation [16]. Recently, Arafa and Sayed-Ahmed
[17] reported that AC offered complete protec-
tion against alcohol-induced gastric lesions in
rat secondary to its anti-radical effects. Owing
to the free radical scavenging property, the
present study has been initiated to investigate
the possible protective effects of AC against
BLM-induced lung toxicity at an early stage of
its development. To achieve this goal, some
biochemical markers such superoxide dismutase
and glutathione peroxidase enzymatic activities
as well as reduced glutathione, malondialde-
hyde, nitric oxide and ATP levels were carried
out in the lung tissue.

MATERIAL AND METHODS

Animals:
Adult male Sprague-Dawley rats, weighing

200-250g were obtained from the animal house
of the National Cancer Institute (NCI), Cairo,
Egypt. Animals were allowed free access to
standard diet and water ad. libitum.

Materials:
Bleomycin hydrochloride (bleocin 15mg

ampoules, from Nippon Kayaku Co., Ltd., To-
kyo, Japan) was a generous gift from the NCI
drug store. Acetyl-L-carnitine was kindly sup-
plied by Dr. Menotti Calvani (Sigma-Tau Phar-
maceuticals, Pomezia, Roma, Italy). All other
chemicals used were of the highest analytical
grade.

Experimental Design:
Bleomycin treatment protocol used in this

study to develop acute lung toxicity has been
previously reported [6,18]. A total of 40 male
Sprague-Dawley rats were used and divided at
random into 4 groups of 10 animals each. The
first group received a daily i.p. injection of
normal saline (0.5ml/200gm body weight) for
5 consecutive days and served as a control.
Animals in the second group were daily i.p.

injected with BLM (15mg/kg body weight) for
5 consecutive days, whereas animals in the third
group were daily i.p. injected with AC
(250mg/kg body weight) for 5 consecutive days.
The fourth group received a daily i.p. injection
of AC (250mg/kg body weight) 2 hrs before
BLM (15mg/kg body weight) for 5 consecutive
days. Twenty-four hrs after the last dose of the
specific treatment, animals were anesthetized
with ether, and blood samples were obtained
by heart puncture. Serum was separated for
measurement of nitric oxide. Animals were then
sacrificed by decapitation after exposure to
ether in a dessicator kept in a well-functioning
hood and lungs were quickly excised, washed
with saline, blotted with a piece of filter paper
and homogenized using a Branson sonifier (250,
VWR Scientific, Danbury, Conn., USA).

Determination of Reduced Glutathione, Malon-
dialdehyde and Nitric Oxide Levels in Lung
Tissue Homogenates:

GSH and MDA levels in lung tissue homo-
genates were determined spectrophotometrically,
using the methods of Ellman [19] and Buege
and Aust [20]; respectively. NO levels in serum
and lung tissue homogenates were determined
according to the method of Ignarro et al. [21].
The assay is based on the diazotization of sul-
fanilic acid with nitric oxide at acidic pH and
subsequent coupling with N-(10 naphthyl)-
ethylenediamine to yield an intensely pink
colored product that is measured spectrophoto-
metrically at 540nm.

Assessment of Enzymatic Activities:

The activity of GSHPx was determined ac-
cording to the method of Lawrence and Burk
[22]. Absorbance was measured at 340nm, and
the results were expressed as umol/min/gm
tissue. The changes in the absorbance at 340nm
were recorded at 1-min interval for 5 min.
Lung activity of SOD was assessed according
to the method of Minami and Yoshikawa [23].
In brief, this method depends on computing the
difference between auto-oxidation of pyrogallol
alone and in the presence of cytosolic fraction
that contains the enzyme. Enzymatic activity
was expressed as ug/gm of tissue.

Determination of Adenosine Triphosphate:

ATP was determined in lung tissue using
HPLC according to Botker et al. [24]. In brief,
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lung tissue was homogenized in ice-cold 6%
perchloric acid, centrifuged at 1000 rpm for 15
min at 0.5ºC, and the supernatant fluid was
injected into HPLC after neutralization to pH
6-7. Chromatographic separation was performed
at a flow rate of 1.2ml/min, using ODS-Hypersil,
150 x 4.6mm I.D., 5um column (Supelco SA,
Gland, Switzerland) and 75mM ammonium
dihydrogen phosphate as mobile phase. The
peak elution was followed at 254nm.

Statistical Analysis:

Differences between obtained values (mean
±SD, n=10) were carried out by one way anal-
ysis of variance (ANOVA) followed by the
Tukey-Kramer multiple comparison test. A p-
value of 0.05 or less was taken as a criterion
for a statistically significant difference.

RESULTS

The effects of BLM, AC and their combina-
tion on the levels of GSH and MDA in lung
tissues are shown in table (1). Administration
of BLM (15mg/kg, I.P.) for 5 consecutive days
resulted in a significant (340%) increase in
MDA (p<0.001) and 39% decrease in GSH
(p<0.001) as compared to the control group.
Treatment of rats with AC for 5 days did not
lead to any significant change in both GSH and
MDA. Administration of AC, 2 hrs prior to
BLM resulted in reversal of BLM-induced in-
crease in MDA and decrease in GSH levels in
lung tissues although these values were still
significantly different than those of the controls.

Table (2) shows the effects of BLM, AC and
their combination on the activity of SOD and
GSHPx in lung tissues. Administration of BLM
(15mg/kg, i.p.) for 5 consecutive days resulted
in a significant 35% (p<0.0001) and 54% (p<
0.001) decrease in the activity of SOD and
GSHPx, respectively, as compared to the control
group, however, AC induced non-significant
change. Administration of AC to BLM-treated
rats resulted in a significant (17% and 31%)
increase in the activity of SOD and GSHPx
(p<0.05 and p<0.001) respectively, as compared
with BLM alone, and significant decrease in
SOD and GSHPx, as compared to controls.

To evaluate the involvement of metabolic
damage in BLM-induced lung toxicity, the ef-
fects of BLM, AC and their combination on the

level of ATP in lung tissue were investigated
(Table 3). Treatment of rats with BLM resulted
in a significant (44%) decrease in ATP level as
compared to control group (p<0.001). Admin-
istration of AC 2 hrs prior to BLM resulted in
complete reversal of BLM-induced decrease in
ATP level in lung tissue to the control values.

Table (4) shows the effects of BLM, AC and
their combination on the level of NO in serum
and lung tissue. Administration of BLM resulted
in a significant (191%) increase in NO produc-
tion in lung tissues (p<0.001) and non-
significant change in serum NO as compared
to the control group (p>0.05). Treatment of rats
with AC for 5 days did not lead to any significant
change in the level of NO in both serum and
lung tissues. Administration of AC 2 hrs prior
to BLM tended to decrease the increased level
of NO observed in the BLM-treated group to
values lesser than that of the control group.

Data are presented as mean ±SD, n=10.
* Indicates significant change as compared with control at p<0.05.
# Indicates significant change as compared with BLM at p<0.05.

Table (1): Effect of Bleomycin, acetyl-L-carnitine and
their combination on the levels of malondial-
dehyde and glutathione in lung tissue.

Treatment
Groups

Control

BLM

AC

AC+BLM

MDA
nmol/gm tissue

172.25±32.5

586.21±77.3*

150.54±30.2

268.75±37.7*#

GSH
µmol/gm tissue

1.82±0.37

0.70±0.08*

2.12±0.26

1.60±0.15*#

Data are presented as mean ±SD, n=10.
* Indicates significant change as compared with control at p<0.05.
# Indicates significant change as compared with BLM at p<0.05.

Table (2): Effect of Bleomycin, acetyl-L-carnitine and
their combination on the activity of superoxide
dismutase, glutathione peroxidase in lung tissue.

Treatment
Groups

Control

BLM

AC

AC+BLM

SOD
µgm/gm tissue

76.79±11.49

49.91±2.17*

70.61±5.77

62.9±3.11*#

GSH-Px
umol/min/gm tissue

16.58±1.82

7.65±1.50*

14.27±1.04

12.80±1.16*#



240

DISCUSSION

Bleomycin, a highly effective anticancer
drug, is known to produce lung toxicity that
limits its clinical use [25-27]. Many experimental
protocols have been reported to induce lung
toxicity with BLM depending on the frequency
of administration and/or the duration of the
study, whether acute or chronic exposure. The
protocol employed in the current study has been
reported in previous studies which have dem-
onstrated that BLM provokes early lung lesions
that preceed the fibrotic changes [6,18,28,29].

Data from this study revealed that BLM
significantly increased MDA and NO production
in lung tissues. This effect could be a secondary
event, following BLM-induced increase in free
radical generation and/or decrease in lipid per-
oxidation protecting enzymes. Previous studies
have reported that BLM-induced lung toxicity

is related to redox cycling of an iron-BLM
complex which in turn catalyzes the formation
of ROS with ultimate progression of lipid per-
oxidation [30,31].

Nitric oxide is a volatile diatomic free radical
that plays physiological roles in normal [32] as
well as tumor tissues [33]. Hopkins et al. [34]
reported that, inflammation in the lung can lead
to increased expression of inducible nitric oxide
synthase (iNOS) and enhanced NO production.
It has been postulated that the resultant highly
reactive NO metabolites may have an important
role in host defense, although they might also
contribute to tissue damage. The contribution
of NO in organ toxicity induced by anticancer
drugs has been previously reported [35, 36].

In the current study, the observed increase
in both reactive oxygen and nitrogen species
after BLM treatment was parallel to the decrease
in GSH, SOD and GSHPx. Contrary to our
results, Shouman et al. [37] reported that chronic
administration of BLM induced significant
increase in SOD and GSH. This discrepancy
could be attributed to the differences in the
animal species, route of administration, schedule
of treatment and the time intervals adapted for
measurement. On the other hand, Kehrer [38]
reported that, intratracheal administration of
BLM to rats was of little effect on GSH and
protein sulfhydryl content of the lung after
systemic dosing with this drug. An explanation
for these diverting findings is that BLM treat-
ment may cause an acute oxidative status, which
lowers temporally GSH level as reported in this
study and others [39]. However, with chronic
therapy there could be up regulation of GSH
level. Thus, when the induced oxidative stress
depletes GSH in the mitochondria, the cells
compensates this depletion by increasing the
activity of the cytosolic glutamylcysteine syn-
thetase enzyme leading to elevation of GSH
level [40,41].

In this study, the observed decrease in GSH-
Px suggests an oxidative type of injury with
BLM-induced damage in lung tissue. Hasegawa
et al. [42] reported that the decrease in GSHPx
is potentially ascribable to inactivation by the
increase in ROS or lipid peroxides when oxida-
tive damage is extreme.

The carnitine system, comprehensive of
carnitine, its derivatives, and proteins involved

Acetyl-L-Carnitine as Protector Against Bleomycin-Induced Acute Lung Injury

Data are presented as mean ±SD, n=10.
* Indicates significant change as compared with control at p<0.05.
# Indicates significant change as compared with BLM at p<0.05.

Table (3): Effect of Bleomycin, Acetyl-L-carnitine and
their combination on adenosine triphosphate
content in lung tissues.

Treatment
Groups

Control

BLM

AC

AC+BLM

Adenosine Triphosphate
nmol/gm potein

26.4±6.8

14.8±4.6*

30.8±8.1

26.6±6.6#

Data are presented as mean ±SD, n=10.
* Indicates significant change as compared with control at p<0.05.
 # Indicates significant change as compared with BLM at p<0.05.

Table (4): Effect of Bleomycin, Acetyl-L-carnitine and
their combination on the level of nitric oxide
in serum and lung tissue.

Treatment
Groups

Control

BLM

AC

AC+BLM

nmol/gm tissue

15.004±2.63

43.65±5.23*

21.12±5.84

10.75±2.59*#

µmol/ml

4.01±0.78

3.83±0.38

4.33±0.61

4.17±0.44

Nitric Oxide
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in its transformation and transport, is indispens-
able for glucose and lipid metabolism in cells.
Two major functions have been identified for
the carnitine system: To facilitate the transport
of long-chain fatty acids into mitochondria for
their utilization in energy-generating processes
and to facilitate the removal from mitochondria
of short-chain and medium-chain fatty acids
that accumulate as a result of normal and ab-
normal metabolism. The carnitine system ap-
pears abnormally expressed both in tumor tissue,
in such a way as to greatly reduce fatty acid
beta-oxidation, and in non-tumor tissue. Some
anticancer drugs contribute to dysfunction of
the carnitine system in non-tumor tissues, which
is reversed by carnitine treatment, without af-
fecting anticancer therapeutic efficacy [43,35,36].

In this study, administration of AC 2hrs
before BLM significantly attenuated BLM-
induced increase in both reactive oxygen and
nitrogen species. These results suggest that AC
has a free radical scavenging activity. Previous
studies have reported that both L-and D-forms
of carnitine and its short chain derivatives in-
cluding AC have similar non-enzymatic free
radical scavenging activity [43,44]. Yasui et al.
[16] reported that AC has antioxidant activity
towards oxidative stress via an inhibition of the
increase in lipid hydroperoxidation observed
in the brain of untreated senescence - accelera-
tion - prone 8 mice (SAMP8). Recently, Arafa
and Sayed-Ahmed [17], reported that the protec-
tive effects of AC and propionyl-carnitine
against alcohol-induced gastric lesions was
mediated through both enzymatic and non-
enzymatic antioxidant mechanisms. Moreover,
AC prevented BLM-induced ATP depletion in
lung tissues. AC may facilitate the beta-
oxidation of fatty acids in mitochondria to
generate ATP, thereby, minimizing the toxic
effects of free forms of long chain fatty acids
in mitochondria. AC, normally produced in
mitochondria, is a precursor of acetyl CoA in
the tricarboxylic cycle [46]. Hagen et al. [47]
reported that AC supplementation have the
ability of increasing mitochondrial function and
general metabolic activity without a concomitant
increase in oxidative stress. In conclusion, data
from this study suggests that the protective
effect of AC against BLM-induced acute lung
injury could be due to its antioxidant activity
and preserving mitochondrial function and im-
proving ATP production.
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