AUTHOR QUERIES

Journal id: GNPL_A_259033

Corresponding author: MAGED S. ABDEL-KADER

Title: A new 3-arylcoumarin from the roots of an Egyptian collection of *Lotus polyphylllos*

Dear Author

Please address all the numbered queries on this page which are clearly identified on the proof for your convenience.

Thank you for your cooperation

<table>
<thead>
<tr>
<th>Query number</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Please provide received and in final form dates</td>
</tr>
<tr>
<td>2</td>
<td>Please provide telephone and fax numbers of corresponding author</td>
</tr>
</tbody>
</table>
A new 3-arylcoumarin from the roots of an Egyptian collection of Lotus polyphyllos

MAGED S. ABDEL-KADER*,†, OMER A. BASUDAN†, MEHTAB PARVEEN‡ and MASOUDA E. AMER†

†Faculty of Pharmacy, Department of Pharmacognosy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
‡Organic Research Lab., Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

(Received 22 22 22; in final form 22 22 22)

Further investigation of different fractions from Lotus polyphyllos Clarke roots resulted in the isolation of the new 3-arylcoumarin derivative; 4',6'-dihydroxy-7, 2'-dimethoxy-3-arylcoumarin (5). In addition, the known compounds β-sitosterol, 1-hexacosanol (1), n-tetracosyl p-coumarate (2), 4'-O-methylerrone (4), and quercetin (6) were identified. The structures were determined from spectroscopic data including 1D- and 2D-NMR experiments.

Keywords: Lotus polyphyllos; Fabaceae; Flavonoids; p-Coumaric acid ester; 3-Arylcoumarin

1. Introduction

Phytochemical investigation of Lotus species revealed that the aerial parts are rich in flavone and flavonol derivatives [1–4]. The roots, as in many plants belonging to family Fabaceae, are rich in isoflavone derivatives [5–8]. We recently reported the isolation of two isoflavone derivatives from the roots of Lotus polyphyllos Clarke [7]. In the present study, further constituents including a new 3-arylcoumarin derivatives were obtained from different fractions of the same plant.

2. Results and discussion

Extraction of fresh roots of L. polyphyllos with 90% alcohol, followed by liquid–liquid partitioning and chromatography on silica gel, yielded five compounds 1, 2, 4–6 in addition to β-sitosterol. Compounds 1, 2, 4, and 6 are known, while 5 was found to be a new natural product. The known compounds 1-hexacosanol (1) and n-tetracosyl p-coumarate (2) [9] were isolated from the combined CHCl₃/EtOAc fractions of the same plant [7]. From the same fractions the common flavonoid quercetin (6)

*Corresponding author. Tel.: 222. Fax: 222. Email: mpharm101@hotmail.com
was identified. Characterization of the known compounds was achieved by comparing their spectroscopic data with the literature.

The UV, MS, 1H-, and 13C-NMR data of 4 were diagnostic for 5-hydroxy, 4′-methoxysiflavone with either C-6 or C-8 prenyl moiety. The prenyl group forms an additional six-membered ring with the C-7 hydroxyl group [10–12]. The data of 4 including COSY, HSQC, and HMBC were typical with those reported for 4′-O-methylderrone rather than 4′-O-methylpinuminisofoflavone (3) [13–17]. Compound 4 was isolated only from three Fabaceae members; Calopogonium mucunoides, Derris robusta, and Euchresta horsfieldii [13,15,18]. The reported chemical shifts of C-8 and C-10 for 4 isolated from E. horsfieldii [15] must be revised. In the same publication the chemical shift assigned for C-6 in 3 is closer to that reported for C-8 in 3. The differentiation between 3 and 4 based on the chemical shift of C-5 OCH$_3$ group in 3 after derivatization is questionable. Extraction by reflux with CH$_2$Cl$_2$ raise the question whether the compound was natural or an artifact.

The UV spectrum of 5 (211, 260, 352 nm (experimental)) as well as the 1H-NMR singlet at δ_H7.88 correlated to carbon at δ_C 136.3 (table 1) in an HSQC experiment were diagnostic for 3-arylcoumarin skeleton [19–22]. 1H-NMR showed a typical ABX system (δ 7.18, d, J = 8 Hz; 6.43, dd, J = 8, 1.5 Hz; 6.45, d, J = 1.5 z) assigned for 7-oxygenated ring A protons. The two singlets at δ 6.35 and 6.37 were ascribed for H-3′ and H-5′, respectively, in a 2′,4′,6′-trioxygenated aryl moiety at C-3. Both 1H- and 13C-NMR indicated the presence of two methoxyls at δ_H3.73, δ_C 55.0 and δ_H 3.86, δ_C 56.0, respectively. The failure of NaOAc to produce any shift in the UV spectrum of 5 indicated that C-7 hydroxyl is methoxylated [23]. The positions of the two methoxyls were assigned based on HMBC experiment (figure 1). The methoxyl singlet at δ_H3.86 showed HMBC correlations (figure 1) to the carbon signal at δ_C 160.0 assigned for C-7. The second methoxyl at δ_H3.73 showed HMBC correlations to carbon signal at δ_C 156.8 assigned for C-2′. In an NOESY experiment, NOE correlations between C-7 methoxyl at δ_H6.43 (dd) and H-8 (δ_H 6.45, d); C-2′ methoxyl at δ_H3.73 and H-3′ singlet at δ_H6.37 further supported the positions of the methoxyl groups. The EIMS of 5 showed M$^+$ at m/z 314 consistent with the molecular formula C$_{17}$H$_{14}$O$_6$ fully supports the assigned structure. Based on the above discussion, 5 was identified as the
A new 3-arylcoumarin from L. polyphylos

Table 1. 1H- and 13C-NMR data of 4 and 5 (δ values, J in parenthesis in Hz)a.

<table>
<thead>
<tr>
<th>Position</th>
<th>1H</th>
<th>13C</th>
<th>1H</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7.87 (s)</td>
<td>152.3</td>
<td>–</td>
<td>160.1</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
<td>123.6</td>
<td>–</td>
<td>118.6</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>180.9</td>
<td>7.88 (s)</td>
<td>136.3</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>162.3</td>
<td>7.18, d (8)</td>
<td>131.5</td>
</tr>
<tr>
<td>6</td>
<td>6.27 (S)</td>
<td>100.4</td>
<td>6.43, dd (8, 1.5)</td>
<td>104.4</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>159.6</td>
<td>–</td>
<td>160.0</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>101.1</td>
<td>6.45, d (1.5)</td>
<td>101.3</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>152.2</td>
<td>–</td>
<td>156.8</td>
</tr>
<tr>
<td>10</td>
<td>–</td>
<td>106.1</td>
<td>–</td>
<td>115.1</td>
</tr>
<tr>
<td>1’</td>
<td>–</td>
<td>122.9</td>
<td>–</td>
<td>102.3</td>
</tr>
<tr>
<td>2’</td>
<td>7.43, 2H, d (8.5)</td>
<td>130.1</td>
<td>–</td>
<td>155.4</td>
</tr>
<tr>
<td>3’</td>
<td>6.96, 2H, d (8.5)</td>
<td>114.1</td>
<td>6.35 (s)</td>
<td>94.5</td>
</tr>
<tr>
<td>4’</td>
<td>–</td>
<td>159.8</td>
<td>–</td>
<td>161.9</td>
</tr>
<tr>
<td>5’</td>
<td>6.96, 2H, d (8.5)</td>
<td>114.1</td>
<td>6.37 (s)</td>
<td>95.3</td>
</tr>
<tr>
<td>6’</td>
<td>7.43, 2H, d (8.5)</td>
<td>130.1</td>
<td>–</td>
<td>155.9</td>
</tr>
<tr>
<td>1”</td>
<td>6.66, d (10)</td>
<td>–</td>
<td>114.6</td>
<td></td>
</tr>
<tr>
<td>2”</td>
<td>5.56, d (10)</td>
<td>–</td>
<td>127.5</td>
<td></td>
</tr>
<tr>
<td>3”</td>
<td>–</td>
<td>78.1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>4”</td>
<td>1.47 (s)</td>
<td>28.1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>5”</td>
<td>1.47 (s)</td>
<td>28.1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>5-OH</td>
<td>12.92 (s)</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>7-OCH$_3$</td>
<td>3.83 (s)</td>
<td>55.4</td>
<td>3.73 (s)</td>
<td>55.0</td>
</tr>
<tr>
<td>4’-OCH$_3$</td>
<td>–</td>
<td>–</td>
<td>3.86 (s)</td>
<td>56.0</td>
</tr>
</tbody>
</table>

aAssignments made by combination of COSY, DEPT, HMQC, HMBC data, and comparison with the literature.

![HMBC Correlations of 5.](image)

new 4’,6’-dihydroxy-7,2’-dimethoxy-3-arylcoumarin. This is the first report for the isolation of 3-arylcoumarin derivative from Lotus species.

3. Experimental

3.1. General experimental procedures

Melting points were determined using Kofler’s hot stage instrument and are uncorrected. UV spectra were determined using Hewlett-Packard HP-845
UV-Vis spectrometer. NMR spectra were recorded on a Bruker Avance DRX-500 instrument at 500 MHz for 1H and 125 MHz for 13C using the residual solvent signal as internal standard. Standard Bruker pulse programs were used for DEPT, 2D NMR COSY, HSQC, and HMBC spectra. EIMS were taken on an E.I. Finnigan model 4600 quadrupole system. FABMS were obtained on a Bruker Bioapex-FTMS. TLC silica gel 60 F254 (Merck) plates and silica gel 60/230–400 mesh (EM Science) were used for separation. Centrifugal preparative TLC (CPTLC) was performed using Chromatotrone, Harrison Research Inc. model 7924 equipped with 4 mm silica gel P_{254} disc. β-Sitosterol, 1-hexacosanol, and quercetin were obtained from Aldrich chemical company.

3.2. Plant material

The plants of *L. polyphyllos* Clarke were described earlier [7].

3.3. Extraction and isolation

The fresh roots (2 kg) were sliced and exhaustively extracted with 90% ethyl alcohol (10 L). The concentrated ethanol extract (250 mL) was diluted with the same volume of distilled water and was successively extracted with petroleum ether (3 x 300 mL), CH$_2$Cl$_2$ (3 x 300 mL), EtOAc (3 x 250 mL), and n-butanol (3 x 200 mL).

The petroleum ether fraction (11.3 g) was subjected to a silica gel column (300 g, 100 x 5 cm i.d.) eluting with light petroleum–CHCl$_3$ in different ratios. Fractions eluted with petroleum ether–CHCl$_3$ (3 : 1) (3.3 g) were rechromatographed on silica gel column (150 g, 45 x 2 cm i.d.) eluting with light petroleum–CH$_2$Cl$_2$ with increasing amounts of CH$_2$Cl$_2$. Fractions 5–7 eluted with 10% CH$_2$Cl$_2$ in petroleum ether and afforded 1 (8 mg) on crystallization from petroleum ether. Fractions 15–20 eluted with 10% CH$_2$Cl$_2$ in light petroleum and were crystallized from petroleum ether to afford 2 (32 mg). Fractions 29–30 eluted with 15% CH$_2$Cl$_2$ in petroleum ether and were crystallized from CHCl$_3$ to yield 6 mg of 4.

Fractions eluted with petroleum ether–CH$_2$Cl$_2$ (1 : 1) (290 mg) afforded 75 mg of β-sitosterol.

Part of the combined CH$_2$Cl$_2$ and EtOAc extracts (15 g) was fractionated on silica gel column (300 g, 100 x 5 cm i.d.) eluting with CHCl$_3$ then CHCl$_3$–MeOH mixtures. Forty fractions 150 mL each were collected, screened by TLC, and similar fractions were pooled. Fractions 23–35 eluted with 3% MeOH in CHCl$_3$ (2.16 g) and were rechromatographed on a silica gel column (100 g, 45 x 2 cm i.d.) eluting with petroleum ether–EtOAc mixtures. Fractions 23–36, eluted with 50% EtOAc, were subjected to CPTLC (4 mm silica gel GF$_{254}$ disk, solvent: 30% EtOAc in petroleum ether). Hundred fractions 150 mL each were collected, screened by TLC, and similar fractions were pooled. Crystallization of fractions 13–19 from CHCl$_3$ afforded 5 (7 mg). Fractions 27–62 were crystallized from MeOH to yield 24 mg of 6.

3.3.1. 4'-O-Methylderrone (4). C$_{21}$H$_{20}$O$_6$, Yellow crystals, m.p. 164°C, UV λ_{max} MeOH nm: 268, 349 (sh); NaOMe: 274, 375 (sh); AlCl$_3$: 226, 283, 410 (sh); AlCl$_3$/HCl: 225, 282,
A new 3-arylcoumarin from L. polyphylos

410 (sh); NaOAc: 269, 349 (sh). 1H- and 13C-NMR data in CDCl3 (table 1). EIMS (rel. int., %): m/z 350 (M+ , 43), 335 (M+ – CH3, 100), 221 (5), 203 (22), 146 (9), 135 (15), 117 (13). FAB-MS (rel. int., %): m/z 351 (M+ + 1, 100), 350 (M+ , 62), 335 (M+ – CH3, 62), 307 (65), 289 (48).

3.3.2. 4, 6’-Dihydroxy-7, 2’-dimethoxy-3-arylcoumarin (5). C17H14O6, Yellow crystals, m.p. 159–160°C, UV λmax MeOH nm: 211, 260, 352. 1H- and 13C-NMR data in DMSO (table 1). EIMS (rel. int., %): m/z 314 (M+ , 17), 310 (15), 296 (M+ – HOH, 87), 286 (M+ – CO, 7), 250 (9), 218 (7), 206(11), 176 (15), 119 (29), 107 (66), 91 (100).

Acknowledgment

This work was supported in part by the Research Center at the College of Pharmacy, King Saud University.

References