<u>20/12/1427</u>

KING SAUD UNIVERSITY DEPARTMENT OF MATHEMATICS

TIME: 1H30

FULL MARKS: 40

<u>*Question*</u> 1. *a*) Determine whether the initial value problem has a unique solution $y' = y + (\sin x)^2$, $y(\pi) = 1$. [6]

b) Find *m* such that y^m will be an integrating factor for the DE: $(y^2 + 2xy)dx = x^2dy$ and solve the DE. [6]

Question 2. a) Solve the initial value problem

$$\frac{dy}{dx} = (x + y + 2)^2, \quad y(-2) = 1.$$
 [6]

b) Write the differential equation

$$x\frac{dy}{dx} = y^2(1+2y^2)$$
[7]

into Bernoulli's equation form, and then solve it.

<u>Question</u> 3 Determine the region of the xy-plane for which the differential equation

$$\sqrt{y+1}\frac{dy}{dx} = \ln(x-5)$$

Would have a unique solution through a point (x_0, y_0) in the region. [7]

<u>*Question*</u> 4. A hot bar is moved to a storage room whose temperature is 20° F. 5 minutes later, the temperature of the bar is 119° C, and after 15 minutes, it is 31° C. What was the temperature of the bar when it was placed in the storage room? [8]