Model Answers
M-374, II-MIDTERM EXAMINATION,
SEMESTER-II, 1429H.

Q.1 (a) Let \(\{ \phi_t \} \) be a one-parameter group of transformations of a smooth manifold \(M \) and \(X \) be the vector field induced by \(\{ \phi_t \} \). If \(f \in C^\infty(p) \), show that

\[
(Xf)(p) = \lim_{t \to 0} \frac{f(\phi_t(p)) - f(p)}{t}
\]

Answer: Note that the vector field \(X \) is defined by \(X_p = \dot{\sigma}(0), \ p \in M \), where the curve \(\sigma : R \to M \) is define by \(\sigma(t) = \varphi_t(p) \). Consequently for a \(f \in C^\infty(p) \), we have

\[
(Xf)(p) = \dot{\sigma}(0)(f) = \left(\frac{d}{dt} \right)_0 (f(\sigma(t))) = \lim_{t \to 0} \frac{f(\varphi_t(p)) - f(p)}{t}
\]

(b) Show that \(\{ \phi_t \} \) defined by \(\phi_t(x,y) = (xe^t, ye^{-t}) \), \((x,y) \in R^2 \) is a one-parameter group of transformations on \(R^2 \) and find the vector field \(\xi \in \mathfrak{X}(R^2) \) induced by \(\{ \phi_t \} \).

Answer: The component functions of \(\varphi_t \) are smooth consequently \(\varphi_t \) is smooth. Moreover for fixed point \((x,y) \) of \(R^2 \), the map \(\phi_t(x,y) : t \to (xe^t, ye^{-t}) \) is also smooth. Also we have \((ae^t, be^{-t}) = (ce^t, de^{-t}) \) implies \(a = c \) and \(b = d \) that is \(\varphi_t \) is one-to-one. Next for any \((u,v) \in R^2 \), we have \((ue^{-t}, ve^t) \in R^2 \) which satisfies \(\varphi_t(u) = (u,v) \) that is the map \(\varphi_t \) is also on-to and the inverse map \(\varphi_t^{-1}(x,y) = (xe^{-t}, ye^t) \) is also smooth, that is \(\varphi_t : R^2 \to R^2 \) is a diffeomorphism for each \(t \). Next we observe that \(\varphi_0(x,y) = (x,y) \) that is \(\varphi_0 \) is an identity map. Also we have \(\varphi_{t+s}(x,y) = (xe^{t+s}, ye^{t-s}) = \varphi_t(\varphi_s(x,y)) = \varphi_{t+s}(x,y) \) that is \(\varphi_t \circ \varphi_s = \varphi_{t+s} \). This proves that \(\{ \varphi_t \} \) is a one-parameter group of transformations of \(R^2 \). To find the vector field \(\xi \) induced by \(\{ \varphi_t \} \), fix a point \(p = (a,b) \in R^2 \) and consider the curve \(\sigma(t) = \varphi_t(p) = (ae^t, be^{-t}) \), which has tangent vector \(\dot{\sigma}(0) = (a,-b) = a \left(\frac{\partial}{\partial x} \right) + b \left(\frac{\partial}{\partial y} \right) \). Thus the vector field generated by \(\{ \varphi_t \} \) is given by

\[
\xi = x \left(\frac{\partial}{\partial x} \right) - y \left(\frac{\partial}{\partial y} \right)
\]

(c) Consider the function \(f(x,y) = xy \) and \(p = (1,1) \in R^2 \) to find \((\xi f)(p) \) for the vector field \(\xi \) described in (b).

Answer: We have \(a = b = 1 \) and consequently

\[
\xi_p = \left(\frac{\partial}{\partial x} \right)_p - \left(\frac{\partial}{\partial y} \right)_p
\]
and \((\frac{\partial}{\partial t})_p (f) = 1, \) \((\frac{\partial}{\partial t})_p (f) = 1 \). Thus we have \((\xi f)_p (p) = \xi_p (f) = 1 - 1 = 0 \)

Q.2 Let \(\{\phi_t\} \) be a one-parameter group of transformations of a smooth manifold \(M \) and \(X \) be the vector field induced by \(\{\phi_t\} \).

(a) If \(f : M \to N \) is a diffeomorphism and \(\psi_t = f \circ \phi_t \circ f^{-1} \), show that \(\{\psi_t\} \) is a one-parameter group of transformations on \(N \).

Answer: Since all the three maps \(f, \phi_t, f^{-1} \) are smooth the map \(\psi_t : M \to M \) is smooth. Also as \(f, \varphi_t \) are diffeomorphism, \(\psi_t = f \circ \phi_t \circ f^{-1} \) also smooth and thus \(\psi_t : M \to M \) is a diffeomorphism. Also as \(\varphi_t \) being smooth in \(t \), we get that \(\psi_t \) is smooth in the variable \(t \). Now \(\psi_0 = \text{id} \) is identity map of \(M \) as \(\varphi_0 \) is and that \(\psi_{t+s} = f \circ \phi_{t+s} \circ f^{-1} \) also smooth in \(t \) is smooth in the variable \(t \). Now \(\psi_0 = \text{id} \) is identity map of \(M \) as \(\varphi_0 \) is and that \(\psi_{t+s} = f \circ \phi_{t+s} \circ f^{-1} = \psi_t = f \circ \phi_t \circ \varphi_s \circ f^{-1} = \psi_t \circ \psi_s \), which proves that \(\{\psi_t\} \) is a one parameter group of transformation of \(M \).

(b) If \(Y \in \mathfrak{X}(N) \) is induced by \(\{\psi_t\} \), then show that \(df(X)(p) = Y(f(p)) \), \(p \in M \).

Answer: We have \(Y_{f(p)} = \dot{\rho}(0) \), where \(\rho(t) = \psi_t(f(p)) \) is the smooth curve.

We have \(\rho(t) = f(\sigma(t)) \), where \(\sigma(t) = \varphi_t(p) \) and \(X_p = \sigma(0), p \in M \). Thus we have

\[
Y_{f(p)} = \dot{\rho}(0) = df_{\sigma(0)}(\dot{\sigma}(0)) = df_p(X_p) = df(X)(p)
\]

(c) Let \(N = S^2 - \{(0,0,1)\} \) and \(f : R^2 \to N \) be the diffeomorphism

\[
f(x,y) = \left(\frac{2x}{1 + x^2 + y^2}, \frac{2y}{1 + x^2 + y^2}, \frac{x^2 + y^2 - 1}{1 + x^2 + y^2}\right)
\]

and \(\{\phi_t\} \) be as in Q.1(b). Find \(\{\psi_t\} \) as in Q.2(a) and the vector field induced by \(\{\psi_t\} \).

Answer: Following (b) to find the vector field induced by \(\{\psi_t\} \), we need to find \(df_p \), for a \(p \in R^2 \). We have the local coordinates \(x,y \) on the chart \((R^2, \text{id}) \) and the chart \((N, \phi) \) on \(N \) with \(\phi(x, y, z) = \left(\frac{x}{\sqrt{1-z}}, \frac{y}{\sqrt{1-z}}\right) \) with local coordinates \(y^1, y^2 \). We have for the components \(f^1, f^2 \) given by

\[
f^1 = y^1 \circ f = \frac{2x}{1 + x^2 + y^2} = x, \quad f^2 = y
\]

consequently we get \(df_p = I : R^2 \to R^2 = T_p N \) and we get the vector field \(Y \) induced by \(\{\psi_t\} \) as

\[
Y = \left(\frac{\partial}{\partial y^1} - \frac{\partial}{\partial y^2}\right) \circ f^{-1}
\]

Q.3 (a) Let \(f : R^3 \to R^3 \) be \(f(x, y, z) = (x + y, x - y, z) \) and \(\omega \in \Lambda^2(R^3) \) be \(\omega = zd\alpha \wedge dy \). Find \(f^*(\omega)(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) \).
Answer: We have
\[df_p = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
and consequently \(df \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)(p) = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)(p). \)
Thus we have
\[f^*(\omega) \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)(p) = z f^*(dx) \Lambda f^*(dy) \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)(p) \]
As \(f^*(dx)(\frac{\partial}{\partial x}) = dx \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) = 1, \)
\[f^*(dx)(\frac{\partial}{\partial x}) = dx \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right) = 1, \]
\[f^*(dy)(\frac{\partial}{\partial x}) = dy \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) = 1 \]
and
\[f^*(dy)(\frac{\partial}{\partial x}) = dy \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right) = -1 \]
\[f^*(\omega) \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)(p) = z f^*(dx) \Lambda f^*(dy) \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)(p) = \frac{1}{2} z(1 + 1) = z \]

(b) If \(\alpha = xdy \wedge dz - ydx \wedge dy \in \Lambda^2(R^3), \) find \(d\alpha. \) Is \(\alpha \) a closed form?

Answer: We have
\[d\alpha = dx \wedge dy \wedge dz - dy \wedge dx \wedge dy = dx \wedge dy \wedge dz \]
where we used \(d^2 f = 0 \) and \(\beta \Lambda \beta = 0 \) for a 1-form \(\beta. \) Since \(dx \wedge dy \wedge dz \) is a basis element of \(\Lambda^3(M) \) which has dimension one, \(d\alpha \neq 0 \) that is the form \(\alpha \) is not closed.

(c) If \(\alpha = dx \wedge dy \in \Lambda^2(R^2), \) find a 1-form \(\beta \in \Lambda^1(R^2) \) satisfying \(\alpha = d\beta. \)

Answer: If we choose any two smooth functioins \(f, g \) on \(R^2 \) and \(\beta = f dx + gdy, \) then the equation \(\alpha = d\beta. \) gives
\[\frac{\partial f}{\partial x} - \frac{\partial g}{\partial y} = 1. \]
Thus choosing functions \(f, g \) satisfying above differential equation, we get the required form \(\beta, \) for instance we have
\[\beta = \frac{1}{2}(xdy - ydx) \]