Q.1(a) Consider R and $A = (0, 1) \subset R$ and the topology

$$\tau_A = \{ U \subset R : A \subset U \} \cup \{ \emptyset \}$$

Is the topological space (R, τ_A) connected? Is the subset A connected? Is (R, τ_A) locally connected? [3]

(b) Show that the topological space R_f is path connected. Is R_f locally connected? What are the quasi components of R_f? [4]

Q.2(a) Suppose (X, τ) be a connected space and τ_1, τ_2 are two topologies on X satisfying $\tau_1 \subset \tau \subset \tau_2$. Are the spaces (X, τ_1), (X, τ_2) connected? Support your answer by either giving a proof or by giving an example. [3]

(b) Consider the subspace

$$X = \{(x, 0) \in \mathbb{R}^2 : x < 0 \} \cup \{(x, y) \in \mathbb{R}^2 : x \geq 0 \}$$

of \mathbb{R}^2. Is the space X connected? Is the space X path connected? what are the path components of X? [4]

Q.3 Show that the pathcomponents, components and quasicomponents of a topological space X containing a point $x \in X$ satisfy

$$P_x = C_x = Q_x$$

Use this to show that a connected locally path connected space is path connected. [4]

Q.4 Let $X = [0, 1] \times [0, 1]$ and $Y = [0, 2]$ be subspaces of \mathbb{R}^2 and R respectively. Show that the map $f : X \to Y$, defined by $f(x, y) = x + y$ is a quotient map. [2]