CONNECTED SPACES

Among the properties of a topological spaces, connectedness and compactness are important properties. Here we shall study the connectedness and its influence on a topological space.

Definition: Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty open subsets of X whose union is X. The space X is said to be connected if there does not exist a separation of X.

Remark: A quick look at the definition suggests that a space X is connected if and only if the only sets which are both open and closed in X are empty set and the space X itself.

Examples:
1) The real line \mathbb{R} is connected for if $\mathbb{R} = U \cup V$ is a separation of \mathbb{R}. Take $a \in U$, $b \in V$ and assume that $a < b$. Put $W = U \cap [a, b]$, then as W is intersection of two closed sets is a closed subset of \mathbb{R}. Let $c = \sup W$. Then as W is closed and bounded $c \in W \subseteq U$. Note that $c \neq b$, as $b \notin W \subseteq U$. Consequently we have $c < b$. Also $(c, b] \cap U$ is empty and consequently $(c, b] \subseteq V$. Taking closure on both sides we see $c \in V = V$. Thus c belongs to both \bar{U} and V a contradiction and this proves that \mathbb{R} is connected.

2) All discrete spaces with more than one point are disconnected, whereas as indiscrete spaces are connected.

3) The subspace $X = \{x \in \mathbb{R} : x \neq 0\}$ is disconnected as well as the subspace $X = \mathbb{R}^2 - \{(x, y) \in \mathbb{R}^2 : y = 0\}$ of \mathbb{R}^2 is disconnected.

4) R_f (\mathbb{R} with cofinite topology) is connected (prove!)

For the subspace we have the following:

Lemma: If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose union is Y, neither of which contains a limit point of the other. The space Y is connected if and only if there exists no separation of Y.

Proof: (See Munkres p-148)
As an application of above lemma we see that the subspace \(X = \{(x, y) \in \mathbb{R}^2 : y = 0\} \cup \{(x, y) \in \mathbb{R}^2 : x > 0, xy = 1\} \) of \(\mathbb{R}^2 \) is not connected as the two subsets above which describe \(X \) form a separation of \(X \) as described in above lemma.

Proposition 1. If the sets \(C \) and \(D \) form a separation of \(X \) and if \(Y \) is connected subset of \(X \), then \(Y \) lies entirely within either \(C \) or \(D \).

Proposition 2. The union of a collection of connected sets that have a point in common is connected.

Proposition 3. Let \(A \) be a connected subset of \(X \). If \(A \subset B \subset A \), then \(B \) is also connected.

Proposition 4. The image of a connected space under a continuous map is connected.

Proposition 5. The product of connected spaces is connected.

Proofs: (See Munkres pp149-150)

Exercise set-1

1) Show that a subset of \(\mathbb{R} \) is connected if and only if it is an interval.

2) Show that the set of rationals \(\mathbb{Q} \) is disconnected in the subspace topology.

3) Is \(\mathbb{R} \) in lower limit topology connected?

4) Let \(X = \mathbb{R} \cup \{\infty\} \) and \(\tau \) be the collection containing empty set and all those subsets of \(X \) which contain \(\infty \). Show that \(\tau \) is a topology on \(X \). What is the subspace topology on \(R \subset X \)? Show that \(X \) is connected while \(R \) is not in this topology. Is connected ness hereditary?

5. Use proposition-2 to show that \(\mathbb{R} \) is connected, and that \(\mathbb{R}^n \) is connected.

6. Show that the \(n \)-sphere \(S^n = \{x \in \mathbb{R}^{n+1} : \|x\| = 1\} \) is connected.

7. Show that a topological space \(X \) is connected if and only if every continuous function \(f : X \to \{0, 1\} \) is constant.
8. Show that a connected space remains connected if its topology is weakened.
9. Show that \mathbb{R} and \mathbb{R}^2 are not homeomorphic.
10. If every pair of points of a topological space X can be joined in X by a connected set, then show that X is connected.
11. Let $f : [a, b] \to \mathbb{R}$ be a continuous function and c be a real number between $f(a)$ and $f(b)$. Show that there exists a $t \in [a, b]$ such that $f(t) = c$.
12. Show that for a continuous function $f : [0, 1] \to [0, 1]$ there exists an $x \in [0, 1]$ such that $f(x) = x$.
13. Suppose A and B are open subsets of a topological space X for which $A \cup B$ and $A \cap B$ are connected. Show that A and B are connected.

Path Connectedness: There is a slightly stronger notion than connectedness and it is path-connectedness.

Definition: Let X be a topological space. For a pair of points $x, y \in X$, a path in X from x to y is a continuous map $f : [a, b] \to X$ of some closed interval $[a, b] \subset \mathbb{R}$ satisfying $f(a) = x$, $f(b) = y$. A topological space X is said to be path-connected if every pair of points in X can be joined by a path.

It immediately follows from above definition that a path-connected space X is essentially connected. However the converse is not true, as shown in examples 2) and 3).

Examples: 1) \mathbb{R} is path-connected as for any pair $a, b \in \mathbb{R}$, the map $f : [0, 1] \to \mathbb{R}$, defined by $f(t) = (1 - t)a + tb$, is a path joining a and b. The same technique yields that \mathbb{R}^n is also path-connected.

2) Comb space: Let $K = \left\{ \frac{1}{n} : n \in \mathbb{Z}_+ \right\}$. Consider the subset of \mathbb{R}^2 given by

$C = \{(x, 0) : x \in [0, 1]\} \cup \{(k, y) : k \in K, y \in [0, 1]\} \cup \{(0, y) : y \in [0, 1]\}$

This subspace C of \mathbb{R}^2 is called the comb space. The subspace

$D = C - \{(0, y) : y \in (0, 1)\}$

is called the deleted comb space. Note that C is connected and that the set

$\{(x, 0) : x \in [0, 1]\} \cup \{(k, y) : k \in K, y \in [0, 1]\}$
being union of connected sets with common point is connected and has limit point \((0, 1)\). Thus

\[D = \{(x, 0) : x \in [0, 1]\} \cup \{(k, y) : k \in K, y \in [0, 1]\} \cup \{(0, 1)\} \]

is connected. However the deleted comb space is not path-connected.

We shall show that the point \(p = (0, 1) \in D\) can not be joined to any other point of \(D\) by a path. To prove this consider a path \(f : [a, b] \to D\) in \(D\) with \(f(a) = p\). Since \(\{p\}\) is closed in the Hausdorff space \(D\), \(f^{-1}\{p\}\) is closed in \([a, b]\). If we show that \(f^{-1}\{p\}\) is also open in \([a, b]\), as \([a, b]\) is connected it would mean that \(f^{-1}\{p\} = [a, b]\), which will amount to say that any path in \(D\) starting at \(p\) is a constant path that is it does not join any other point of \(D\). This will prove that there is no path in \(D\) joining any point in \(D - \{p\}\) to \(p\). Thus we have to only show that \(f^{-1}\{p\}\) is open in \([a, b]\).

Take a point \(c \in f^{-1}\{p\}\). Since \(f\) is continuous at \(c\), with \(f(c) = p\), we choose an open ball \(V\) around \(p\) which does not intersect \(-x\)-axis and an open interval \(U = (c - \varepsilon, c + \varepsilon)\) such that \(f(U) \subset V^* = V \cap D\). This is the requirement of the continuity of \(f\) at \(c\). We shall show that \(U \subset f^{-1}\{p\}\), and this will show that \(c\) is an interior point of \(f^{-1}\{p\}\) and consequently that \(f^{-1}\{p\}\) is open. For this choose a point \(q = (\frac{1}{n}, y_0) \in V^*\) such that \(p \neq q\), and a real number \(r\) such that \(\frac{1}{n+1} < r < \frac{1}{n}\). Since continuous image of connected set is connected, \(f(U)\) is connected subset of \(D\), and it does not touch \(-x\)-axis, it does not intersect the vertical line \(x = r\). Now consider the disjoint subsets \((-(\infty, r) \times R)\) and \((r, \infty) \times R\) of \(R^2\). Since \(f(U)\) is connected and contains a point of \((-(\infty, r) \times R)\), it can not contain the point \(q \in (r, \infty) \times R\). This proves that \(f(U) = \{p\}\), that is \(U \subset f^{-1}\{p\}\), which shows that \(c\) is an interior point of \(f^{-1}\{p\}\). Thus the deleted comb space \(D\) is not path-connected.

3) **Topologist’s sine curve:** Consider the subspace

\[S = \left\{ (x, \sin \frac{1}{x}) : 0 < x \leq 1 \right\} \]

of \(R^2\). Then as the interval \((0, 1]\) is connected and \(f : (0, 1] \to R^2\) defined by \(f(x) = (x, \sin \frac{1}{x})\) is continuous, \(S\) is connected. Therefore the closure \(\overline{S}\) of \(S\) in \(R^2\) is also connected. The subspace \(\overline{S}\) is called the topologist’s sine curve. Note that \((0, 0) \in \overline{S}\) and it can be shown like previous example that no path exists joining \((0, 0)\) to a point \((a, \sin \frac{1}{a}), a > 0\) in \(\overline{S}\). Thus \(\overline{S}\) is connected but not path-connected.
Exercise set-2

1. Show that a nonempty open connected subset of \mathbb{R}^n is path-connected.

2. Let A, B be path-connected subsets of a topological space X. If $A \cap B$ is nonempty show that $A \cup B$ is path-connected.

3. Show that $\mathbb{R}^n, n > 1$ is not homeomorphic to \mathbb{R}.

4. Is the continuous image of a path-connected space path-connected? What are other such questions?

5. Show that the n-sphere $S^n, n > 1$, is path-connected.

Components: In a topological space X we can define a relation by requiring $x \sim y$ if and only if there is a connected subset of X containing both x and y. This is an equivalence relation and the equivalence classes of this relation are called the components of X. We have the following:

Theorem: The components of a topological space X are connected disjoint subsets of X whose union is X, such that each connected subset of X intersects only one of them.

Given a topological space X, we define another relation \sim, by requiring that $x \sim y$ if and only if there exists a path in X joining x and y. It is clear that for this relation we have for each $x \in X, x \sim x$.

For a constant map $f : [0, 1] \to X, f(t) = x$ is a path. Now suppose $x \sim y$. Then there is a path $f : [0, 1] \to X$ with $f(0) = x, f(1) = y$. Define $h : [0, 1] \to X$ by $h(t) = f(1 - t)$, it follows immediately by continuity of composition of two continuous functions that h is path satisfying $h(0) = y, h(1) = x$, and consequently $y \sim x$. Finally if $x \sim y, y \sim z$, then there are paths $f : [0, 1] \to X$, and $g : [0, 1] \to X$, such that $f(0) = x, f(1) = y, g(0) = y, g(1) = z$. Define a map $h : [0, 1] \to X$ by

$$h(t) = \begin{cases} f(2t) & \text{if } t \in [0, \frac{1}{2}] \\ g(2t - 1) & \text{if } t \in [\frac{1}{2}, 1] \end{cases}$$

which by pasting lemma is continuous and is therefore a path satisfying $h(0) = x, h(1) = z$, which proves that $x \sim z$. Consequently the relation \sim is an equivalence relation and the equivalence classes
of this relation are called the path components of X. We have the following:

Theorem: The path components of a topological space X are path-connected disjoint subsets of X whose union is X, such that each path-connected subset of X intersects only one of them.

Finally we define one more relation on a topological space X by requiring $x \sim y$ if there is no separation $X = A \cup B$ of X by disjoint open subsets such that $x \in A$ and $y \in B$. It can be shown that \sim is an equivalence relation and the equivalence classes of this relation are called the quasicomponents of X.

Remark: Naturally all connected spaces have only one component the space itself. The subspace $X = (1, 2) \cup (3, 4)$ of \mathbb{R} is disconnected and has components $(1, 2), (3, 4)$. These are also the path-components of X. The deleted comb space has one component the space itself and two path-components.

Exercise set-3

1. Show that a component of a space is a closed set. Give an example of a topological space in which a component is not an open set.

2. If a space has finitely many components, then show that each component is an open set.

3. Show that a homeomorphism $f : X \to Y$ induces a one-to-one correspondence between components of X and the components of Y.

4. Give example of spaces X and Y for which there is a one-to-one correspondence between components of X and the components of Y with corresponding components homeomorphic, but X is not homeomorphic to Y.

5. For a topological space X show that the component of $x \in X$ is contained in the quasicomponent of x. If X is compact Hausdorff, show that the component of a point coincides with the quasicomponent.

6. For a topological space X show that the path component of $x \in X$ is path-connected and is contained in the component of x.

7. Give an example of a topological space X to show that a path component of X need not be closed set.

8. Show that the quasicomponent of a point x in a topological space X is the intersection of all open-and-closed subsets of X which
contain the point x, and that a quasicomponent of a point is a closed set.

9. Let

$$X = \{(0,0),(1,0)\} \cup \left\{\left(x,\frac{1}{n}\right) : 0 \leq x \leq 1, n \in \mathbb{Z}_+\right\}$$

be the subspace of \mathbb{R}^2. Find the component and quasicomponent of the point $(0,0)$.

10. Show that the subspaces $X = (0,1) \cup (2,3)$ and $Y = (0,1) \cup [2,3]$ are not homeomorphic.

11. Find the components and quasicomponents of R_l (R with lower limit topology).

Local connectedness: Note that connectedness and path-connectedness are global properties of a topological space. Now we shall introduce some local properties called the local connectedness and local path-connectedness.

Definition: A topological space X is said to be locally connected at $x \in X$, if for each neighbourhood U of x there is a connected neighbourhood V of x contained in U. A topological space X is said to be locally connected if it is locally connected at each of its points.

The notions connectedness and local connectedness are not related to each other: a space could possess one of these properties or both or none of these properties. Similarly we define the local path-connectedness as follows:

Definition: A topological space X is said to be locally path-connected at $x \in X$, if for each neighbourhood U of x there is a path-connected neighbourhood V of x contained in U. A topological space X is said to be locally path-connected if it is locally path-connected at each of its points.

Examples: 1) The space \mathbb{R} is connected as well as locally connected.

2) The subspace $X = [1,2) \cup (2,3]$ of \mathbb{R} is not connected however it is locally connected.

3) The deleted comb space is connected but not locally connected.
4) The set Q of rationals as subspace of R is neither connected nor locally connected.

5) Consider the subspace $Y = D \cup \{(0, \frac{1}{n}) : n \in \mathbb{Z}_+\}$ of R^2, where D is the deleted comb space. The space Y is locally connected at $(0, 0)$ but is not locally path connected at this point.

We have the following results on locally connectedness and locally path connectedness:

Theorem 1. A topological space X is locally connected if and only if for every open set U of X, each component of U is open in X.

Theorem 2. A topological space X is locally path-connected if and only if for every open set U of X, each path-component of U is open in X.

Theorem 3. If a topological space X is locally path-connected, then the components and the path components of X are the same.

(For proofs see Munkres p-162)

Exercise set-4

1. Show that if X is locally connected then the quasicomponents and components of X are the same.

2. If $f : X \to Y$ is continuous and X is locally connected, is $f(X)$ necessarily locally connected? What if f is both continuous and open?

3. Suppose X is locally path-connected. Show that every connected open subset of X is path connected.

4. Show that if X is locally path-connected then each path component of X is both open and closed.

5. Show that if X is locally connected then each component of X is both open and closed.

6. Show that a connected locally path-connected space is path-connected.