A CHARACTERIZATION OF $S^{n-1} \times S^1$ BY DIFFERENTIAL EQUATIONS

D. E. BLAIR AND M. OKUMURA

1. Introduction

It is well known (see, e.g., [3]) that if a complete Riemannian manifold admits a conformal non-Killing gradient vector field, then it is isometric to a Euclidean sphere. In general a conformal non-Killing vector field V satisfies $\mathcal{L}_V g = -2\lambda g$ for some function λ, where \mathcal{L} denotes Lie differentiation and g the Riemannian metric. In the case that $V = \text{grad} \lambda$, the formula $(\mathcal{L}_V g)(X, Y) = g(\nabla_X V, Y) + g(\nabla_Y V, X)$ gives

$$\nabla_X V = -\lambda X,$$

where ∇ denotes covariant differentiation with respect to the Riemannian connexion of g.

The purpose of this note is to characterize the product $S^{n-1} \times S^1$ by similar differential equations.

Theorem. Let M^n, $n \geq 3$, be a compact Riemannian manifold with a regular unit Killing vector field Z. Then M^n admits a non-trivial function λ such that $V = \text{grad} \lambda$ is orthogonal to Z and satisfies

$$\nabla_X V = -\lambda X + \lambda g(Z, X) Z$$

if and only if M^n is globally isometric to $S^{n-1} \times S^1$.

The idea of the proof is to fibrate M^n as a circle bundle over a manifold M^{n-1} which is then shown to be a sphere. However, as the only principal circle bundle over a sphere of dimension ≥ 3 is the trivial one, M^n, for $n \geq 4$, is then the product $S^{n-1} \times S^1$. (For example, in [2] Kobayashi shows that the set of all principal circle bundles over a simply connected manifold M form a group isomorphic to $H^2(M, Z)$.) For $n = 3$ the argument is slightly different.

2. Proof of the Theorem ($n \geq 4$)

Since the vector field Z is regular (i.e. each point of M^n has a neighbourhood such that the integral curve through the point passes through the neighbourhood only once) we obtain a foliation $\pi: M^n \rightarrow M^{n-1}$ of M^n over an $(n-1)$-dimensional manifold M^{n-1}. Now as M^n is compact and Z regular, its integral curves are circles; but Z being a Killing vector field of constant length gives

$$g(\nabla_Z Z, X) = -g(\nabla_X Z, Z) = 0$$

and hence that the integral curves of Z are also geodesics. Also since Z is Killing, the metric g is projectable to a metric g' on M^{n-1} and we have

$$g'(X, Y) \circ \pi = g(\tilde{\pi}X, \tilde{\pi}Y),$$

Received 4 September, 1972.

\(\tilde{\pi} \) denoting the horizontal lift with respect to the Riemannian connexion of \(g \). Thus, by a theorem of R. Hermann [1], \(M^n \) is a principal circle bundle over \(M^{n-1} \).

Now as \(V = \text{grad} \lambda \) is orthogonal to \(Z \), we have \(Z\lambda = 0 \) and, by the differential equation, \(\nabla_Z V = 0 \). Moreover,

\[
g(\nabla_Y Z, X) = -g(\nabla_X Z, Y) = g(Z, \nabla_X Y)
\]

and hence

\[
[Z, V] = \nabla_Z V - \nabla_V Z = 0.
\]

Thus \(\lambda \) and \(V \) are projectable and we can define \(\lambda' \) and \(V' \) by \(\lambda' \circ \pi = \lambda \) and \(V' = \pi_* V \) (note that \(V = \tilde{\pi}V' \)).

Letting \(V' \) denote covariant differentiation with respect to the Riemannian connexion of \(g' \), the differential equations of the submersion are

\[
\nabla_{\tilde{\pi}X} \tilde{\pi}Y = \tilde{\pi}\nabla_Y X + A_{\tilde{\pi}X} \tilde{\pi}Y
\]

\[
\nabla_{\tilde{\pi}X} Z = A_{\tilde{\pi}X} Z + \text{vert} (\nabla_{\tilde{\pi}X} Z)
\]

\[
\nabla_Z \tilde{\pi}X = A_{\tilde{\pi}X} Z + T_Z \tilde{\pi}X
\]

\[
\nabla_Z Z = T_Z Z + \text{vert} (\nabla_Z Z)
\]

where the decompositions are into horizontal and vertical parts and the tensors \(T \) and \(A \) are given in [4]. Now as \(Z \) is Killing and of constant length,

\[
g(\nabla_Z \tilde{\pi}X, Z) = -g(\tilde{\pi}X, \nabla_Z Z) = g(\nabla_{\tilde{\pi}X} Z, Z) = 0;
\]

thus the differential equations of the submersion become

\[
\nabla_{\tilde{\pi}X} \tilde{\pi}Y = \tilde{\pi}\nabla_Y X + A_{\tilde{\pi}X} \tilde{\pi}Y
\]

\[
\nabla_{\tilde{\pi}X} Z = A_{\tilde{\pi}X} Z
\]

\[
\nabla_Z \tilde{\pi}X = A_{\tilde{\pi}X} Z
\]

\[
\nabla_Z Z = 0.
\]

We now differentiate \(V' \) and \(\lambda' \) on \(M^{n-1} \).

\[
\tilde{\pi}\nabla_X V' = \nabla_{\tilde{\pi}X} V - A_{\tilde{\pi}X} V
\]

\[
= -\lambda \tilde{\pi}X - A_{\tilde{\pi}X} V
\]

\[
= \tilde{\pi}(-\lambda' X) - A_{\tilde{\pi}X} V
\]

from which

\[
\nabla_X V' = -\lambda' X
\]

and

\[
A_{\tilde{\pi}X} V = 0.
\]

We also have

\[(\tilde{\pi}X') \circ \pi = (\tilde{\pi}X) \lambda = g(V, \tilde{\pi}X) = g'(V', X) \circ \pi \]

and hence

\[V' = \text{grad} \lambda'. \]

Thus the base space \(M^{n-1} \) is isometric to a sphere, and for \(n \geq 4 \), the bundle \(\pi: M^n \to M^{n-1} \) is trivial giving \(M^n \) as a product \(S^{n-1} \times S^1 \).
Conversely, it is easy to see that $S^{n-1} \times S^1$ admits a non-trivial solution of the given equations. Let Z be tangent to S^1 and z a 1-form such that $z(Z) = 1$. Let g' be the usual metric on S^{n-1}; then $g = g' + z \otimes z$ is a metric on $S^{n-1} \times S^1$. Suppose V' and λ' satisfy $\nabla_x V' = -\lambda'X$ and $V' = \text{grad} \lambda'$ on S^{n-1}, then extend V' and λ' to $S^{n-1} \times S^1$ being zero on the second factor. Now computing $\nabla_x V$ and $X\lambda$ for $X = Z$ and X orthogonal to Z we see that the given equations are satisfied.

3. The case $n = 3$

We first show that Z is parallel on M^3. As V' is a conformal non-Killing gradient vector field on S^2 (the projection of a constant vector field on R^3), we can find a (Killing) vector field W' orthogonal to V' except at their common isolated zeros. By §2 we have $A_{\tilde{w}'} V = 0$. Now as $A_X Y$ is skew-symmetric on horizontal vector fields, we have, extending by continuity, that $\nabla_{\tilde{w}'} \pi Y = \pi \nabla_{\tilde{w}'} Y$, i.e., A vanishes for horizontal vectors over S^2. Now

$$g(A_{\tilde{w}'} Z, \pi Y) = g(\nabla_{\tilde{w}'} Z, \pi Y) = -g(Z, \nabla_{\tilde{w}'} \pi Y) = 0.$$

Also

$$g(A_{\tilde{w}'} Z, Z) = 0$$

since $A_{\tilde{w}'} Z$ is horizontal. Thus $A = 0$ on M^3 and hence Z is parallel on M^3.

As before, the set of all circle bundles over S^2 is isomorphic to $H^2(S^2, Z) \approx Z$. Moreover, all such bundles are known explicitly. They are the trivial one $S^2 \times S^1$, the Hopf fibration $\pi: S^3 \to S^2$ or they are obtained from the Hopf fibration as follows. Let G_p be the cyclic subgroup of S^1 of order p. Then S^3/G_p is a principal bundle over S^2 with group $S^1/G_p \approx S^1$ (cf. §5 of [2]).

Clearly M^3 is not S^3, as Z is a non-vanishing parallel vector field. If now M^3 were S^3/G_p for some p, then again as Z is parallel and non-vanishing, the simply connected covering space of M^3 would admit a non-vanishing parallel vector field and would therefore be non-compact. But the simply connected covering space of S^3/G_p is S^3. Thus M^3 must again be the trivial bundle over S^2, completing the proof.

References

Michigan State University,
East Lansing, Michigan 48823.