Q.1 Use Green’s theorem to evaluate the line integral

\[
\oint_C \left(y^2 dx + 3xy dy \right),
\]
where \(C \) is the closed curve which is the boundary of the region bounded by the graphs of the equations \(y = x^3 \) and \(y^2 = x \).

Answer: \(\frac{1}{8} \).

Q.2 Evaluate the surface integral

\[
\iint_S (x^2 + z^2) dS,
\]
where \(S \) is the surface of the graph of \(x^2 + y^2 - z^2 = 0 \) with \(1 \leq z \leq 4 \).

Answer: \(\frac{45\sqrt{2}}{4} \pi \).

Q.3 If \(\textbf{F} = -xi - yj + zk \) and \(S \) is the portion of the graph \(2z = x^2 + y^2 \) cut off by the planes \(z = 1 \) and \(z = 2 \), find the flux of \(\textbf{F} \) through the surface \(S \).

Answer: \(18\pi \).

Q.4 If \(\textbf{F} = 2xi - yj - zk \) and \(S \) is the surface of the sphere \(x^2 + y^2 + z^2 = 4 \), verify the Divergence theorem.

Q.5 Use Divergence theorem to find the flux of the force \(\textbf{F} = yi - xj + zk \) through the surface \(S \) of the region bounded by the graphs of \(3z = 4 - x^2 - y^2 \) and \(z = \sqrt{x^2 + y^2} \).

Answer: \(\frac{\pi}{2} \).

Q.6 Let \(\textbf{F} = -yi + xj - zk \) and \(S \) be the surface of the paraboloid \(z = 1 + x^2 + y^2 \) inside the cylinder \(x^2 + y^2 = 1 \). Evaluate the surface integral

\[
\iint_S (\nabla \times \textbf{F}) \cdot \textbf{n} dS.
\]

Answer: \(2\pi \).

Q.7 Let \(\textbf{F} = yi - xj + zk \) and \(S \) be the surface of the graph of \(z = 6 - x^2 - y^2 \) inside the cylinder \(x^2 + y^2 = 2 \). Verify the Stokes theorem.

Answer: Each side is \(-8\pi \).