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Abstract

A moderate (M ~5) earthquake struck the northeastern United Arab Emirates (UAE) and northern Oman on March 11, 2002.

The event was felt over a wide area of the northern Emirates and was accompanied by smaller (felt) events before and after the

March 11 main shock. The event was large enough to be detected and located by global networks at teleseismic distances. We

estimated focal mechanism and depth from broadband complete regional waveform modeling. We report a normal mechanism with

a slight right-lateral strike-slip component consistent with the large-scale tectonics. The normal component suggests relaxation of

obducted crust of the Semail ophiolite (specifically, the Khor Fakkan Block) while the right-lateral strike-slip component of the

mechanism is consistent with shear across the Oman Line. Felt earthquakes are rare in the region, however no regional seismic

network exists in the UAE to determine local seismicity. This event offers a unique opportunity to study the active tectonics of the

region as well as inform future studies of seismic hazard in the UAE and northern Oman.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Active tectonics in the broad Arabian Gulf region is

clearly dominated by the Arabian–Eurasian collision.

This is most evident by the occurrence of earthquakes

along the Zagros Thrust (Fig. 1, inset) making it one of

the most seismically active continental regions on

Earth. However, eastern Arabia, part of the Arabian
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Platform, is relatively aseismic. Most of the UAE (the

western and central parts) is topographically flat and

covered with sediments of the Arabian Platform, mak-

ing geologic and seismic investigations virtually impos-

sible. The remainder of the UAE is topographically

high (the Oman Mountains) and is dominated by the

Semail ophiolite. Because no regional seismic network

exists in the UAE it has not been possible to assess

local seismicity.

The Semail was a largely intact slice of hot young

oceanic crust that was thrusted southwestwards or west-

wards onto the Arabian continental margin during the

first stages of closure of the Neo-Tethys Ocean at the
(2006) 57–64



Fig. 1. Map of the northeastern United Arab Emirates (UAE) with locations of the March 11, 2002 earthquake (USGS-PDE, yellow circle; REB,

white diamond; and KISR, cyan star), mapped faults and main geographic features. The focal mechanisms estimated by the Harvard CMT (red) and

this study (yellow) are also shown. The Wadi Al-Fay, Wadi Shimal and other faults with late normal slip components (black) and other faults,

including the Wadi Ham strike-slip fault (red) are shown. (Inset) Map of the UAE and surrounding region with tectonic plate boundaries and large

earthquake locations (circles). The Zagros Thrust (black line), Makkran and Zendan Fault Zone (ZFZ) are shown.
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end of the Cretaceous. Obductions are tectonically rare

events, but the Semail is almost unique in its state of

preservation. For this reason the geological studies of

the Emirates and Oman have focused on the petrolog-

ical details of the ocean crust (Lippard et al., 1986), and

the structure and stratigraphy of the rocks below the

Semail (Robertson et al., 1990; Searle and Cox, 1999)

which record the stages of the obduction process. On

the basis of these data sophisticated models for oceanic

crust generation, intra-oceanic crustal detachment, par-

tial subduction of continental crust and obduction of

oceanic crust have been constructed for this region

(Boudier et al., 1988; Hacker et al., 1996; Gnos and

Nicolas, 1996; Gregory et al., 1998).

Following erosion and subsidence of the obducted

mass, a period of quiet shallow water carbonate shelf

deposition prevailed during the Eocene (Alsharhan and
Nairn, 1997). A second compressional event affected

the northeastern and northern margin of the Arabian

Plate in the Oligocene–Miocene as a result of the final

closure of the main tract of Neo-Tethys (Glennie et al.,

1973). This event continues to the present day as a slow

continent–continent collision responsible for the vast

Alpine–Himalayan ranges of which the Zagros Moun-

tains are one part (Şengör, 1987). The Alpine event

produced the SW-verging thrusts of the Zagros and

west-verging thrusts and associated huge N–S trending

folds in the Tertiary limestone cover rocks in the Emi-

rates and northern Oman (Searle, 1985; Warrak, 1996).

Unfortunately little research has been conducted in

the northern Oman Mountains on neotectonics, and

there are no detailed field surveys of the Tertiary faults

or assessment of their seismicity. These fault structures

include the Dibba Line (Glennie et al., 1990) and the
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Wadi Shimal and Wadi Ham Faults (Gnos and Nicolas,

1996). These and associated faults lie within the Dibba–

Masafi–Fujairah area of the northern UAE (Fig. 1).

On March 11, 2002 a moderate (magnitude ~5)

earthquake struck the northeastern UAE. This event

was detected and located by global seismic networks.

Table 1 compiles the reported event parameters. These

include global network locations by the United States

Geologic Survey Preliminary Determination of Epicen-

ters (USGS-PDE) and the Reviewed Event Bulletin of

the Comprehensive Nuclear Test Ban Treaty Organiza-

tion (CTBTO-REB) and the regional network location

by the Kuwait Institute for Scientific Research (KISR).

The Harvard Centroid Moment Tensor (CMT) Project

estimated a location and moment tensor for this event

using well-established methods (Dziewonski and

Woodhouse, 1983), although this event was probably

near the low magnitude threshold for the CMT proces-

sing. The USGS-PDE, CTBTO-REB and KISR loca-

tions are broadly consistent, within 10 km of each other.

This region is sparsely populated, however the event

was felt throughout the northern Emirates. Reports of

greatest damage were found near the town of Masafi

(Fig. 1), suggesting that the network locations are

reasonably close to the true epicenter. Many smaller

earthquakes accompanied the largest event over a peri-

od of several months, the most significant being a

foreshock (mb 4.3) on January 09, 2002. A report on

these events and the accompanying damages is provid-

ed by Othman (2002). A challenge to this study is the

unknown uncertainty in the reported event locations

from distance observations, especially when trying to

associate the earthquake to a mapped geologic fault.

Given that the damage was concentrated in the town of

Masafi (north of the reported locations) we must accept

uncertainties of the reported locations on the order of at

least 10 km. The orientation of the inferred focal mech-

anism provides insight on the relationship of this earth-

quake with the known geologic structure.

In this article we present a double-couple focal

mechanism for the March 11, 2002 Masafi earthquake
Table 1

Locations and origin times for the March 11, 2002 Masafi earthquake

Catalog Latitude Longitude Depth,

km

Time Magnitude

USGS-PDE 25.236 56.145 10 20:06:37.2 5.1 (mb)

IDC-REB 25.2663 56.1009 0a 20:06:37.5 4.9 (mb)

KISR 25.23 56.13 10 20:06:37 4.6 (MS)

CMT 24.82 55.77 15 20:06:34.5 5.0 (Mw)

a IDC-REB procedures often fix depths at 0.
estimated from complete regional waveforms. The focal

mechanism is interpreted in terms of mapped faults in

the northeastern UAE and provides insights into the

active tectonics of the northern Oman Mountains.

2. Source parameters from waveform modeling

Broadband complete (body and surface waves)

regional waveforms are now widely used to estimate

earthquake source parameters (e.g. seismic moment,

focal mechanism and depth; see for example studies

by Dreger and Helmberger, 1993; Walter, 1993; Ran-

dall et al., 1995; Ritsema and Lay, 1993, 1995).

These methods typically use the reflectivity method

(Randall, 1994) to compute Green’s functions for a

one-dimensional (plane-layered) earth model and can

be applied to events with magnitudes as small as 4.0

and even smaller for near-regional distances. Accura-

cy of the method to produce reliable results depends

on the accuracy of the earth model and signal-to-

noise. Because regional seismic waves propagate

through the crust and uppermost mantle (the litho-

sphere) and this outermost region of the earth is

strongly heterogeneous, an accurate lithospheric ve-

locity model is important, especially for periods

shorter than about 20 s. Filtering the data diminishes

sensitivity of the data to the velocity model. However

sensitivity to focal parameters diminishes when using

only long-period energy (longer than 35 s) particu-

larly focal depth (Ritsema and Lay, 1995).

We obtained broadband waveforms from three sta-

tions at regional distances (b2000 km). Fig. 2 shows

the stations and paths used in this study. Included in

these data are waveforms from the Saudi Arabian

National Seismic Network operated by King Abdula-

ziz City for Science and Technology (KACST, Al-

Amri and Al-Amri, 1999) and the Kuwait National

Seismic Network operated by the Kuwait Institute for

Scientific Research (KISR; Bou-Rabee, 1999; Al-

Awadhi and Midzi, 2001). Data from station ABKT

(Alibek, Turkmenistan) were obtained from the Incor-

porated Research Institutions for Seismology Data

Management System (IRIS-DMS). These three paths

provide adequate azimuthal coverage to estimate the

focal mechanism.

We used the USGS-PDE location and origin time

(Table 1) for our source parameter estimation because

this location was estimated from the most complete

distribution of stations. The regional waveform data

were converted to ground displacement. Synthetic seis-

mograms were computed using the reflectivity comput-

er codes written by Randall (1994). Paths within the



Fig. 2. Map of the Arabian Peninsula and southern Eurasia showing the event, stations and paths of regional waveforms considered in this study.
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Arabian Platform (HASS and KBD) sample the sedi-

ments of the Arabian Platform, which thicken from the

exposed basement of the Arabian Shield in the west to

nearly 10 km near the Zagros Thrust in the east (Seber

et al., 1997). The relatively slow and thick sedimentary

structure plays a strong role in the surface wave dis-

persion of paths crossing the region. For the path to

stations HASS (Al-Hasa, Saudi Arabia) we used the

Arabian Platform velocity model of Rodgers et al.

(1999). For the path to station KBD (Kabd, Kuwait)

we used the Arabian Platform model but increased the

sedimentary cover to 8 km (from 4 km). For the path to

ABKT we used a model developed by William Walter

(personal communication). The P-wave models used

for the synthetics seismogram calculations are shown

in Fig. 3 for comparison.

Seismic moment, focal mechanism and depth were

estimated using the grid search algorithm of Walter
(1993). We estimated the source parameters for indi-

vidual three-component waveforms at each station

and then jointly for three stations (HASS, KBD and

ABKT). Data and synthetic were filtered between 80

and 30 s period (0.0125–0.033 Hz). The results for

the individual station estimates show a consistent

moment, mechanism and depth. Fig. 4a–c shows

the focal mechanism, moment magnitude and scaled

error as a function of source depth. The scaled error

is the root mean-square (rms) difference between the

data and synthetic (filtered) waveforms for all three

components normalized by the rms amplitude of the

data. A perfect fit would have a scaled error of zero.

Station HASS has a minimum in the scaled error at

15 km with a right-lateral strike-slip mechanism.

Station KBD shows a sharp reduction in the scaled

error at 15 km, with a normal focal mechanism

rotating to a strike-slip mechanism for deeper depths.



Fig. 3. Crustal P-wave velocity models used for the synthetic seis-

mogram calculations.
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Station ABKT is well fit with a strike-slip mecha-

nism, but without a well-defined depth minimum.

The mechanisms for the joint (3-station) grid search

show a minimum at 15 km with a north–northeast
Fig. 4. Focal mechanism and misfit versus depth for single station estimates

versus depth when all three stations are used is shown in (d). In each panel t
striking normal mechanism with a slight right-lateral

strike-slip component. The resulting moment magni-

tude, MW, is 4.89 corresponding to a seismic moment

of 2.43�1016 N-m. Our solution is generally consis-

tent with the Harvard CMT solution. The double-

couple focal mechanism solutions from the Harvard

CMT and this study are given in Table 2. We found

that our 3-station mechanism fit the waveforms

slightly better than the Harvard CMT double-couple

focal mechanism.

The resulting waveform fits for our preferred source

model are shown in Fig. 5. The fits are quite satisfac-

tory. In a separate test we could not fit the data as well

with a single model for all three paths (not shown). In

our preferred model, the body-waves are well fit espe-

cially for stations HASS and KBD. Station ABKT is

nodal for Rayleigh waves and the observed waveforms

suggest a quasi-Love wave on the vertical and radial

component, possibly due to multi-pathing and/or an-

isotropy.

3. Discussion

The March 11, 2002 Masafi UAE earthquake pro-

vides a unique opportunity to investigate seismotec-
at (a) HASS, (b) KBD and (c) ABKT. The focal mechanism and misfit

he moment magnitude at each depth is shown above each mechanism.



Table 2

Double-couple focal mechanisms form the Harvard CMT project and

this study

Author Strike Dip Rake Depth, km M0, N-m MW

CMT 598 598 �828 15 3.4e16 5.0

This study 188 568 �1208 15 2.34e16 4.89
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tonics of the Oman Mountains. The focal mechanism of

this event is mixed with both normal and right-lateral

strike-slip components. The right-lateral strike-slip com-

ponent of the mechanism is consistent with right-lateral

motion along the Oman Line in Iran (e.g. Kadinsky-Cade

and Barazangi, 1982). The Oman Line defines the

boundary between continental collision of the Arabian

and Eurasian Plates along the Zagros Thrust and oceanic-

continental convergence in the Makkran region. Conver-

gence along the Zagros Thrust is much faster than along

theMakkran, leading to dextral motion along the Zendan

Fault Zone (see Fig. 1).

The normal component is dominant and is consis-

tent with brittle extension of the bKhor Fakkan

BlockQ, a massif of mainly Semail peridotite bounded

to the west and northwest by the Wadi Shimal Fault,

and bounded to the southwest by the Wadi Ham Fault

(Fig. 1). The focal mechanism provides for northeast

trending steeply southeast-dipping normal faults simi-

lar in orientation to an important pair of faults branch-

ing to the northeast from the Wadi Ham Fault (Gnos

and Nicolas, 1996) (Fig. 1). These faults meet the

Wadi Ham Fault at the town of Bulaydah between

Masafi and Fujairah. The faults enclose a narrow

block of granulite facies metamorphic rocks (the

Bani Hamid metamorphic series) that originally lay

beneath the Semail ophiolite, forming part of its meta-
Fig. 5. Observed (solid) and synthetic (dashed) three-component waveforms

were filtered 0.0125–0.033 Hz.
morphic sole. These metamorphic rocks are quite

high-pressure indicators suggesting a significant verti-

cal component of fault displacement to raise the Bani

Hamid metamorphic series and emplace them in the

overlying Semail ophiolite.

Searle and Cox (1999) represent the two northeast

trending faults at Bulaydah as reverse faults — the

more northwesterly as a younger out-of-sequence

thrust, and the other as part of the original Semail

thrust in contact with its metamorphic sole. Gnos and

Nicolas (1996) drew attention to the fact that the Bani

Hamid metamorphics separate distinct upper and

lower level sections of the Semail ophiolite. Searle

and Cox’s (1999) model is inconsistent with this latter

observation, unless the more southeasterly fault

bounding the Bani Hamid metamorphics was later

activated as a normal fault, allowing a higher level

of the Semail to be juxtaposed against them. In fact,

normal slip sense is a common late reactivation of

faults with northeast and north–south orientations in

this region, e.g. the Dibba Line faults and the Wadi

Shimal Fault (Searle, 1988).

It seems likely then that the Masafi earthquake was

a result of normal fault reactivation of an older north-

east trending fault, which was originally a compres-

sional structure. Boote et al. (1990) may provide a

mechanism for normal fault reactivation of the north-

east trending structures. These authors argued for

north–south trending dextral transpression along the

transfer zone between the continent–continent colli-

sion west of the Straits of Hormuz, and the subduc-

tion of oceanic crust under Iran in the Makkran Gulf

of Oman. North–south dextral shear strain is associ-

ated with NE trending normal faults, as suggested in

Fig. 1.
for our preferred source model at all three stations. Data and synthetic
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4. Conclusions

From complete regional waveform modeling we

were able to estimate a focal mechanism of the March

11, 2002 Masafi, UAE, earthquake. The mechanism is

consistent with relaxation of the Khor Fakkan Block as

well as with a slight left-lateral strike-slip component.

The event provides some constraint on active tectonics

in the relatively aseismic northern Oman Mountains

region. The large normal component is consistent

with motion along preexisting thrust faults related to

obduction of the Semail ophiolite. The strike-slip com-

ponent is consistent with left-lateral motion across the

Oman Line.

This earthquake caused considerable alarm in the

northern Emirates and highlights the fact that damaging

earthquakes can occur in this region. The recent installa-

tions of modern seismic networks in Saudi Arabia and

Oman can improve studies of earthquake activity in the

eastern Arabian Plate, however these stations are likely

too far away to record low magnitude events in the UAE.

A national seismic network in the UAE would provide

the necessary data for evaluating earthquake hazard.
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