Importance of Appropriate Footwear in a Patient with Diabetic Foot

Saleh AL-Tayyar Ph.D
Assistant Professor / Biomedical Technology Dept
College of Applied Medical Sciences
King Saud University
Diabetic Mellitus results from failure of the endocrine system to regulate blood glucose levels.

Foot ulceration is the most common cause of amputation in diabetic patients.

85% of diabetes related lower extremity amputations are preceded by ulceration.
Background (Cont)

- Increased dynamic foot pressures is a major risk factor in the formation of diabetic foot ulcer.
- Foot related hospital admission constitutes 20% of all diabetic patients admission.
- Foot care and Patients footwear education are important initial treatment for diabetic feet at risk.
Background (Cont)

- Neuropathic ulcerations result from repetitive stress over areas of high pressure.
- Ulcers are predicted at a pressure greater than 30 Psi (207 Kpa).
Diabetic Care Cost

Below is incidence and cost and ulcers and amputations for diabetic related problems in the USA. (Jonathan J. Scarlet and others, 1989)
Diabetic Care Cost (Cont)

<table>
<thead>
<tr>
<th>Type of Care</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic hospital cost for diabetic foot infection (USA $ per year)</td>
<td>200,000,000</td>
</tr>
<tr>
<td>Average length of stay in hospital.</td>
<td>22 weeks</td>
</tr>
<tr>
<td>Cost per hospitalization (USA $)</td>
<td>6,600</td>
</tr>
<tr>
<td>Cost of Amputation (USA $)</td>
<td>8000 – 12000</td>
</tr>
<tr>
<td>Admission due to foot problems</td>
<td>20% of all diabetic admission</td>
</tr>
</tbody>
</table>
Diabetic Care Cost (Cont)

<table>
<thead>
<tr>
<th>Type of Care</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in amputation due to podiatric care and patient’s education.</td>
<td>50%</td>
</tr>
<tr>
<td>Reduction in amputation due to improvement of foot care.</td>
<td>50%</td>
</tr>
<tr>
<td>Amputation in diabetic patients as a percentage of all non-traumatic amputation.</td>
<td>50% - 70%</td>
</tr>
<tr>
<td>Amputation of admitted patients with infected ulcers.</td>
<td>80%</td>
</tr>
</tbody>
</table>
Motor Neuropathy

- Atrophy & weakness of foot Intrinsic muscles
 - Flexion deformity of the foot
 - Areas of increased pressure. MT heads and toes
- Reduced or absent sweat secretion
 - Abnormal walking pattern
 - Dry skin with and fissures
Plantar Pressure

Biomechanical measurements of pressure distribution looks at Pressures between the foot plantar surface (sole) and the supporting surface.
There are various systems available for the measurements of pressures inside the shoe and insole and the plantar foot during functional activities.

Pressures assessment are useful in the diagnosis and management of pressure related foot problems.
Reasons for investigating the foot function

- better understanding of foot function (biomechanics and orthopaedics),
- disorders of foot function, e.g. after trauma,
- foot deformities (hallux valgus, rheumatology and diabetes)
Reasons for investigating the foot function

Result: ulcerations =>

Increased local pressure

Result: ulcerations =>
Mass, Weight, Force, Pressure

Mass
m=0.102 kg
The gravity is causing a weight (force) of this body of $F = 1 \text{ N}$.

Mass, **Weight**, **Force**, **Pressure**

Mass

$m = 0.102 \text{ kg}$
The gravity is causing a weight (force) of this body of $F = 1 \text{ N}$.

Assuming a contact area of the body with the ground of 1 cm^2 a pressure ($= \text{force/area}$) of $p = 1 \text{ N/cm}^2$ occurs.
Traditional methods for pressure distribution measurement

ink print

Podoscope and permanent deformable foam are not pressure distribution measurements!
Types of pressure distribution measurement:

I. Diagnostics: barefoot measurement

- Investigations of foot deformities,
- gait analysis,
- recognition of areas with enhanced risk of ulceration

Protocols:
- first step,
- free walking

Only the dynamic barefoot measurement on the platform can be used for functional diagnostics!
Example of a dynamic pressure distribution measurement
Calculation of averaged pressure distribution

5 trials

Averaged pressure distribution for whole roll over process

© novel gmbh 2002
Maximum pressure picture (MPP) for:

- common roll over
- high arch type
- flat foot
Toe function without and with hallux brace

![Foot diagrams comparing toe function with and without hallux brace.](image)
Important!

Patients with a diabetic foot syndrome have to get special therapeutical footwear and special insoles!
Where do(es) the additional force(s) come from?

- Fixed by heel cap
- Fixed by toe box
- Additional force from wrinkle(s)
- Additional force from bending the insole of the shoe
pedar in-shoe system

- 2 x 99 sensors
- 10,000 sen./s
 = 50 frames/s
- 2 - 60 N/cm²
- < 5%

Measurement online

© novel gmbh 2002
Optimization of insole

without insole

with insole

with optimized one
Foot wear

Shoes construction and materials are used to reduce the load on the foot during the roll-over process. (cushioning to decrease impact during heel strike).
Foot wear (Cont)

Individuals with reduced plantar fat thickness are at greater risk of overloading their feet during locomotion.
Foot wear (Cont)

- Feet come in all sizes.
- Shoes differ in type and style.
- Foot problems are the result of improperly fitting shoes.
Footwear (Cont)

- The 26 bones in each foot do not fully set until age 18.
- The shoes we wear as children are vital to our future foot health.
- We can still do damage to our adult feet by wearing the wrong shoes.
Footwear (Cont)

Diabetes must get the right fit for their footwear. A proper shoe must be:

- Well fitting.
- Made of soft leather.
- Must have lace-up or velcro to prevent slipping forward causing pressure on the toes
Footwear (Cont)

- Wide and deep enough to accommodate the foot comfortably without putting pressure on any part of it.
- The entire bottom of the shoe should be flat with a gentle slope upward under the toes.
- The main part of the shoe (upper) must be made of natural material, e.g. leather.
Footwear (Cont)

- The lining (inside the shoe) must be smooth and without seems.
- More flexible sole shoes were found to have more decreased plantar pressure than less flexible sole shoes.
- Extra depth shoes alone must be used with insoles to reduce foot plantar pressure.
"Off the shelf" shoes designed to customize to the feet for comfort and protection. Recommended by foot health professionals for diabetes, arthritis, and forefoot disorders such as bunions and hammer toes. With plastazote foam lining and removable plastazote orthotics.
Urban walkers are a versatile, “off the shelf) shoe. Designed to ensure proper biomechanical support, they reduce shear force.
Footwear (cont)
Footwear (cont)
Footwear (cont)
Footwear (Cont)

<table>
<thead>
<tr>
<th>Footwear tested</th>
<th>Mean peak Pressure (Kpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Barefoot.</td>
<td>1194.4</td>
</tr>
<tr>
<td>• Extra depth (no insole).</td>
<td>985.5</td>
</tr>
<tr>
<td>• Sandal (hand made) with insole.</td>
<td>840.7</td>
</tr>
<tr>
<td>• Extra depth shoes with poron insole.</td>
<td>645.2</td>
</tr>
<tr>
<td>• Commercial sandal with rubber insole.</td>
<td>594.3</td>
</tr>
</tbody>
</table>

(Jonathan Scarlet & Mark Blais) 1989
Footwear (Cont)

<table>
<thead>
<tr>
<th>Footwear tested</th>
<th>Mean peak Pressure (Kpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Commercial tennis shoe with two rubber insole</td>
<td>549.2</td>
</tr>
<tr>
<td>• Commercial sandal with rubber insole and metal stave for rigidity.</td>
<td>508.5</td>
</tr>
<tr>
<td>• Patients prescribed.</td>
<td>359.5</td>
</tr>
</tbody>
</table>

(Jonathan Scarlet & Mark Blais) 1989
Insoles

- Insoles are very important in restoring foot shape and function.
- Insoles help reduce plantar pressure.
- Rigid insoles help reduce areas of increased plantar pressure and increase total contact area.
Insoles (Cont)

- Insoles are designed using soft elastic materials.
- Thick insoles help reduce plantar pressure.
Components of Proper Insoles:

1. Highly Durable Leatherette Covering
2. Shock Absorbant Impact Foam
3. Medical Grade Polypropylene Support Base
4. Shock Absorbant Crepe Heel
5. Deep Heel Cup to Support & Hold Heel
6. Plastic Protective Base
Improper Footwear

The following type of shoes must be avoided.

- Slip on shoes. (constrict the foot and cause it to slide forward)
- Court shoes. (low fronted with no support to the foot and narrow at toe box)
- Sandals (leave the toe exposed)
Things you should not do

- Never walk barefoot.
- Women should try to limit the use of fashion shoes and use more “foot friendly” shoe for everyday wear.
Conclusion

- Studies showed 19% recurrence rate of healed ulcer in patients with modified shoes compared to 90% recurrence rate in patients with normal foot wear.
Conclusion (Cont)

- Patients prescribed (custom designed) Shoes were shown to reduce pressure tremendously.
The shoes we wear are very important for health feet. However, they are very critical for diabetic patients health.
Thank You