Glossary

AGSA Swiss Working Group for Drugs of Abuse Testing Guidelines
ASTRA Swiss Federal Roads Authority
BAP Swiss Federal Office for Police Matters
BSV Swiss Federal Office for Social Security
CAP College of American Pathologists
CSCQ Quality Control Center Switzerland
Cut-off Medical and/or Legal Decision Value, pos/neg
TLC Thin Layer Chromatography
DIN German Industrial Standard
DOD U.S. Department of Defense
EJPD Swiss Federal Department of Justice and Police
EN European Norm
FDHA Swiss Federal Department of Home Affairs
GC-MS Gas Chromatography with Mass Spectrometric detection
GC-NPD Gas Chromatography with Nitrogen Phosphor Detection
HPLC High Performance Liquid Chromatography
HPLC-DAD High Performance Liquid Chromatography with Diode Array Detector
HPLC-ECD High Performance Liquid Chromatography with Electrochemical Detection
HPLC-MS High Performance Liquid Chromatography with Mass Spectroscopic Detection
ID Identification
KBMAL Criteria to operate medical-analytical laboratories
KLV Health Care Benefits Ordinance
KVG Swiss Federal Health Insurance Act
KVV Health Insurance Ordinance
LSD Lysergic Acid Diethylamide
NIDA U.S. National Institute on Drug Abuse
MQ Association for Medical Quality Control
Peak Portion of a differential chromatogram recording the detector response when a single component is eluted from the column
QC Quality Control
QUALAB Swiss Commission on Quality in the Medical Laboratory
s (2s) Standard deviation
SAMHSA U.S. Substance Abuse and Mental Health Services Administration
Spot Spontaneous urine, urine specimen
SULM Swiss Union for Laboratory Medicine
THC Delta(9)-tetrahydrocannabinol
UVEK Swiss Federal Department of Environment, Transport, Energy and Communications
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>5</td>
</tr>
<tr>
<td>1. Scope of guidelines</td>
<td>6</td>
</tr>
<tr>
<td>2. Guidelines: areas of application</td>
<td>7</td>
</tr>
<tr>
<td>3. Specimen collection, transport and sample handling (“chain of custody”)</td>
<td>8</td>
</tr>
<tr>
<td>4. Factors influencing analytically determined results, manipulation of the urine sample</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Type of interference (q.v. §12.1 also)</td>
<td>9</td>
</tr>
<tr>
<td>4.1.1 Medicament interference</td>
<td>9</td>
</tr>
<tr>
<td>4.1.2 Manipulation of urine tests</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Manipulation and recognition</td>
<td>9</td>
</tr>
<tr>
<td>4.3 Definitions according to SAMHSA</td>
<td>10</td>
</tr>
<tr>
<td>5. Specimens</td>
<td>10</td>
</tr>
<tr>
<td>6. Use of rapid tests: non-instrumental immunoassays for drug screening in urine</td>
<td>11</td>
</tr>
<tr>
<td>6.1 Definition, characteristics</td>
<td>11</td>
</tr>
<tr>
<td>6.2 General remarks</td>
<td>11</td>
</tr>
<tr>
<td>6.3 Areas of application</td>
<td>11</td>
</tr>
<tr>
<td>7. Immunochemical analyses</td>
<td>11</td>
</tr>
<tr>
<td>7.1 Single substance analyses (S)</td>
<td>11</td>
</tr>
<tr>
<td>7.1.1 Areas of application</td>
<td>12</td>
</tr>
<tr>
<td>7.2 Substance group analyses (G)</td>
<td>12</td>
</tr>
<tr>
<td>7.2.1 Areas of application</td>
<td>12</td>
</tr>
<tr>
<td>7.3 Long-term monitoring</td>
<td>13</td>
</tr>
<tr>
<td>7.4 Comment</td>
<td>13</td>
</tr>
<tr>
<td>8. Cut-off values, sensitivity and specificity of immunoassays</td>
<td>13</td>
</tr>
<tr>
<td>8.1 Terminology</td>
<td>13</td>
</tr>
<tr>
<td>8.1.1 Cut-off values</td>
<td>13</td>
</tr>
<tr>
<td>8.1.2 Detection limit/sensitivity</td>
<td>13</td>
</tr>
<tr>
<td>8.1.3 Specificity</td>
<td>14</td>
</tr>
<tr>
<td>8.2 AGSA-recommended cut-off concentrations</td>
<td>14</td>
</tr>
<tr>
<td>9. Chromatographic methods (confirmation analysis)</td>
<td>15</td>
</tr>
<tr>
<td>9.1 Definition</td>
<td>15</td>
</tr>
<tr>
<td>9.2 General remarks</td>
<td>15</td>
</tr>
<tr>
<td>9.3 Methods</td>
<td>15</td>
</tr>
<tr>
<td>9.4 Areas of application</td>
<td>16</td>
</tr>
<tr>
<td>10. Cut-off values, sensitivity and specificity of chromatographic methods</td>
<td>16</td>
</tr>
<tr>
<td>10.1 Terminology</td>
<td>16</td>
</tr>
<tr>
<td>10.1.1 Cut-off values</td>
<td>16</td>
</tr>
<tr>
<td>10.1.2 Sensitivity</td>
<td>16</td>
</tr>
<tr>
<td>10.1.3 Specificity</td>
<td>17</td>
</tr>
<tr>
<td>10.2 AGSA-recommended cut-off-concentrations</td>
<td>17</td>
</tr>
</tbody>
</table>
11. Blood/serum analysis

- 11.1 Blood/serum analysis for differential diagnostics (A) 17
- 11.2 Blood/serum analysis for forensic investigations (C) 18

12. Interpretation of the results

- 12.1 Steps in interpretation 18
 - 12.1.1 Analytical interpretation (laboratory expert) 18
 - 12.1.2 Toxicological interpretation (laboratory expert) 18
 - 12.1.3 Medical interpretation (client, laboratory expert) 18
- 12.2 Factors affecting pharmacokinetics and analysis result 19
- 12.3 Significance of the result 19
 - 12.3.1 Questions when using immunoassays 19
 - 12.3.2 Answers 19
- 12.4 Consequences of the results 20

13. Quality assurance in drug analysis 20

14. Documentation of the results and reports, archiving 20

- 14.1 Analysis order 21
 - 14.1.1 Unequivocal identification of the order 21
 - 14.1.2 Reason and/or clinical details 21
 - 14.1.3 Sample data (in forensic investigations) 21
 - 14.1.4 Personal data 21
 - 14.1.5 Tests required 21
- 14.2 Report 21
 - 14.2.1 Material 21
 - 14.2.2 Result 21
 - 14.2.3 Administrative data 22
- 14.3 Archiving 22
 - 14.3.1 Data archiving period 22

15. Urgency of results 22

16. Costs, reimbursement, list of analyses 23

- 16.1 General remarks 23
- 16.2 Drugs of abuse testing in the clinical sector and in differential diagnostics (A) 23
- 16.3 Drugs of abuse testing in substitution programs or withdrawal treatment (B) 23
- 16.4 Drugs of abuse testing in forensic investigations (C) 23
- 16.5 Drugs of abuse testing in a non-traditional environment (D) 23

17. Legal aspects, standards and data protection 24

- 17.1 General prerequisites (cf. §14) 24
- 17.2 Data protection 24
- 17.3 Authorized clients 24
- 17.4 Laboratories authorized to conduct analyses for drugs of abuse 24
- 17.5 Accreditations and permits required by law for laboratories 25
- 17.6 Confidentiality of un-requested positive results 25

18. Further information 26
19. List of working group members

20. Pharmacokinetics, detectability
 20.1 Amphetamines and Derivates
 20.2 Barbiturates
 20.3 Benzodiazepines
 20.4 Cannabis
 20.5 Cocaine
 20.6 GHB
 20.7 Ketamine
 20.8 LSD
 20.9 Methadone
 20.10 Methaqualone
 20.11 N-Benzylpiperazine (A2) and related substances
 20.12 Opiates
 20.13 Psilocybin

21. External quality control

22. External quality control schemes

Foreword

These guidelines were drawn up by a working group comprised of representatives from the following institutions:

- Swiss Federal Office of Public Health (SFOPH)
- Swiss Society of Pharmacists (SSPh)
- Swiss Society for Clinical Chemistry
- Swiss Society of Forensic Medicine
- Swiss Union for Laboratory Medicine
- Swiss Association of Diagnostics Manufacturers
- Swiss Society for Directors of Clinical Laboratories (FAMH)
- University of Berne

These guidelines are intended as recommendations. They have no legally binding nature. Uniformity in the treatment of drug analyses is the objective.

The use of drug analysis for the various questions in medical and/or psychotherapeutic and forensic sector as well as in specific workplaces can have decisive consequences that are professional and social in nature for those affected. For this reason, it is necessary to take the greatest possible care when conducting analyses and interpreting the results. The guidelines support analytical laboratories in their adherence to the required quality assurance.

The guidelines are periodically revised, updated and amended.

In addition, the working group will consult external quality control scheme organizers and all laboratories that perform drugs of abuse testing.
1. Scope of guidelines

- **Individual**
 - **Applicant**
 - **Specimen**
 - **Laboratory**

Specimen collection
Identity, authenticity, integrity of donor and urine sample, “chain of custody”, issue, range analyses

Transportation
Containers, material for shipment, fail-safe, “chain of custody”

Pre-analytics
Storage, specimen processing

Analytics
Quality control, methodologies, sensitivity, specificity

Post-analytics
Storage, additional orders, confirmation

Quality Assurance
Internal and external quality control

Interpretation
Cut-off values, timing of specimen collection, pharmacokinetics

Documentation
Reports, release of results, handling of positive results, confirmation, recommendations

Costs
Invoicing, list of analyses, legal aspects
2. Guidelines: Areas of application

<table>
<thead>
<tr>
<th>A</th>
<th>Drugs of abuse testing in the clinical sector and in differential diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Clinical investigation, intoxication</td>
</tr>
<tr>
<td></td>
<td>• Hospitals with emergency units</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>Drugs of abuse testing in substitution programs or withdrawal treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Drug substitution program (methadone, heroin, etc.)</td>
</tr>
<tr>
<td></td>
<td>• Psychiatric clinics, dispensing facility, rehabilitation center, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>Drugs of abuse testing in forensic investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Drugs in road traffic and prisons, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Drugs of abuse testing in a non-traditional environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Workplace testing, examinations by company physicians, military, schools</td>
</tr>
</tbody>
</table>

The terms A, B, C, D are used throughout these guidelines.
3. Specimen collection, transport and sample handling ("chain of custody")

Objectives
- The identity, authenticity and integrity of the individual and of the urine sample must be guaranteed
- Respect private sphere
- Identify and prevent any medical, chemical and/or physical manipulations (endogenous/exogenous dilution, additives, substitutions) of the urine sample

Measures
- Check identity
- Measure temperature (32-38 °C) within 4 min (collection site)
- Check consistency, smell, pH and colour
- Dye rinsing water, washbasin, soap and disinfectant outside toilet
- Conduct visual check
- Instructions and advice on taking urine samples provided by the laboratory

Urine sample
- Urine sample of 30 ml or more if possible

Laboratory
- Limited and controlled access to the laboratory
- Receipt of urine sample only by authorized personnel
- Measurement of colour, consistency, smell, pH, creatinine, specific weight/density and refraction index
- Storage (under lock and key): +4 °C pre-analytically, -20 °C post-analytically
- Storage times: not defined for A and B (6 months recommended), minimum of 1 year for C and D

Analysis

<table>
<thead>
<tr>
<th>Individual</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check identity</td>
<td>Check identity</td>
</tr>
<tr>
<td>Measure temperature (32-38 °C) within 4 min</td>
<td>Measure temperature (32-38 °C) within 4 min</td>
</tr>
<tr>
<td>Check consistency, smell, pH and colour</td>
<td>Check consistency, smell, pH and colour</td>
</tr>
<tr>
<td>Dye rinsing water, washbasin, soap and disinfectant outside toilet</td>
<td>Dye rinsing water, washbasin, soap and disinfectant outside toilet</td>
</tr>
<tr>
<td>Conduct visual check</td>
<td>Conduct visual check</td>
</tr>
<tr>
<td>Instructions and advice on taking urine samples provided by the laboratory</td>
<td>Instructions and advice on taking urine samples provided by the laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urine sample</th>
<th>Urine sample of 30 ml or more if possible</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Container (supplied by the laboratory) with safety top, leak proof, unbreakable; label with clear ID number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order form (uncomplicated, unambiguous): ID number, last name, first name, date of birth, gender, date/time of sampling</td>
<td>Order form (uncomplicated, unambiguous): ID number, last name, first name, date of birth, gender, date/time of sampling</td>
</tr>
</tbody>
</table>

| Analysis | |
4. Factors influencing analytically determined results, manipulation of the urine sample

Adherence to the most important pre-analytical steps (described in §3) guarantees the proper approach and can expose any intentional or unintentional influence on the results that would lead to a distortion of the test result and hamper its interpretation (q.v. §12. Interpretation).

4.1 Type of interference (q.v. §12.1 also)

4.1.1 Medicament interference
- Distortions caused by medicaments taken for therapeutic purposes (some of these types of interference are not evident from the data provided by reagent manufacturers since these have not been tested, e.g. neuroleptics, antidepressants).
- Physiological distortion (in-vivo interference), e.g. excessive water intake, alimentary influences and medicaments (e.g. poppy seeds, multivitamin preparations).

4.1.2 Manipulation of urine tests
- Substances added to the urine that are capable of influencing one or several tests.
- Substances that modify the drug to be screened thereby preventing detection using a confirmation process.
- Exchange of urine for other drug-free urine samples, urine for sale or other dyed liquids.

4.2 Manipulation and recognition

<table>
<thead>
<tr>
<th>Types of manipulation</th>
<th>Laboratory test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution: drinking, diuretics, addition of liquid</td>
<td>Creatinine/density, color</td>
</tr>
<tr>
<td>Bleach solutions (toilet cleaner) with hypochlorite</td>
<td>pH, check*, smell, color</td>
</tr>
<tr>
<td>Liquid soap</td>
<td>Check*, foam</td>
</tr>
<tr>
<td>Aldehyde or glutaraldehyde</td>
<td>Check* and strip tests**</td>
</tr>
<tr>
<td>Strong acids and bases</td>
<td>pH, check*</td>
</tr>
<tr>
<td>Nitrites</td>
<td>NO₂⁻ on strip tests**</td>
</tr>
<tr>
<td>Ascorbate</td>
<td>pH, check*</td>
</tr>
<tr>
<td>Medicaments and vitamins</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Chromates</td>
<td>Color test, strip tests**</td>
</tr>
<tr>
<td>Peroxide and peroxidase (Stealth)</td>
<td>Check*, strip tests**</td>
</tr>
<tr>
<td>Vitamins (multivitamin preparations)</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Others (Visine, Maggi, etc.)</td>
<td>Chromatography and others</td>
</tr>
</tbody>
</table>

(q.v. "Further information" for detailed list)
* Check = Checking method specially for the relevant analysis process, e.g. "Sample check"
** Strip tests, e.g. Adultacheck 4 (pH, NO₂⁻, creatinine, glutaraldehyde)
4.3 Definitions according to SAMHSA

Urine is considered to be diluted if:
Creatinine <1.8 mmol/L (20 mg/dL), but >0.4 mmol/L (4.52 mg/dL)
In Europe <2 mmol/L (22.6 mg/dL), but >0.4 mmol/L (4.52 mg/dL)
Specific weight <1.003 kg/L, but >1.001 kg/L

No urine matrix, substituted, if:
Creatinine <0.4 mmol/L (4.52 mg/dL)
Specific weight <1.001 kg/L

Urine is considered to be adulterated if:
• The nitrite concentration is >500 mg/L
• The pH value is <3 or >11
• Exogenous substances that lead to adulteration are detectable (q.v. §4.2)
• Endogenous substances are detectable in non-physiological concentrations

5. Specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Area of application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Urine</td>
<td>X</td>
</tr>
<tr>
<td>Serum, Plasma</td>
<td>X</td>
</tr>
<tr>
<td>Whole blood</td>
<td>X</td>
</tr>
<tr>
<td>Sweat</td>
<td>-</td>
</tr>
<tr>
<td>Post-mortem blood</td>
<td>X</td>
</tr>
<tr>
<td>Saliva</td>
<td>X</td>
</tr>
<tr>
<td>Stomach contents</td>
<td>X</td>
</tr>
<tr>
<td>Punctates and secretions</td>
<td>X</td>
</tr>
<tr>
<td>Dialysate</td>
<td>X</td>
</tr>
<tr>
<td>Tissue samples</td>
<td>-</td>
</tr>
<tr>
<td>Hair</td>
<td>-</td>
</tr>
<tr>
<td>Substance samples</td>
<td>X</td>
</tr>
</tbody>
</table>
6. Use of rapid tests: non-instrumental immunoassays for drug screening in urine

6.1 Definition, characteristics
"Rapid tests" for drug screening in urine are non-instrumental immunoassays unsuited to mass screening (q.v. §7) that permit fast (5-10 min) yes/no decisions outside the laboratory (on site). Urine processing is usually unnecessary.

6.2 General remarks
- As is the case with instrumental immunoassays, non-instrumental immunoassays are only indicative and not evidential in nature. All manufacturers’ instructions for use point out this fact but many users pay little or no attention to this.
- Despite their simplicity and the fact that equipment can be dispensed with, these non-instrumental immunoassays should only be conducted by trained personnel who also know how to interpret the results and any irregularities.
- If the result is positive, the urine sample must not be disposed of but stored for any confirmation analysis that may be required (q.v. §9 for ruling).
- Most of these assays contain a test area that displays any irregularity in the reaction sequence. Nevertheless, irregularities are possible that are not indicated with internal checks.

6.3 Areas of application
A: Instrumental immunoassays using equipment calibrated according to AGSA guidelines are preferred, particularly in emergency departments. Dependent on requirements, differential and confirmation analyses may be required. Attention should be paid to the fact that qualitative results might lead to false differential diagnoses and quantification will be needed in addition.
B: Mainly in doctors’ practices and pharmacies for checking on patients’ statements or compliance monitoring (methadone). It is recommended that the rapid test be conducted in the presence of the patient. A result that is disputed by the patient must be verified using a method based on a different analytical principle.
C: Non-instrumental immunoassays are generally not recommended in the forensic sector. For police applications, e.g. during traffic controls, it is vital that the recommendations listed in §6.2 “General remarks” are noted.
D: Non-instrumental immunoassays should only be used in exceptional cases. Instrumental immunoassays using equipment calibrated according to AGSA guidelines are preferable. In the case of workplace testing of urine, positive results require confirmation.

7. Immunochemical analyses
This term applies to all variations of analytical systems that contain an antigen-antibody reaction that is independent of the detection system being used.

7.1 Single substance analyses (S)
Immunoassays of single substances are designed to detect a substance and/or its metabolites. Examples of single substance analyses are as follows: cannabis (THC carboxylic acid), cocaine (benzoylcegonine), 2-ethyliden-1.5-dimethyl-3,3-diphenylpyrrolidine (EDDP), LSD, methadone, methaqualone, 6-monoacetylmorphine (6-MAM).
7.1.1 Areas of application

<table>
<thead>
<tr>
<th>Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabis (THC carboxylic acid)</td>
<td>X</td>
<td>X</td>
<td>X²</td>
<td>X</td>
</tr>
<tr>
<td>Cocaine (benzoylecgonine)</td>
<td>X</td>
<td>X</td>
<td>X²</td>
<td>X</td>
</tr>
<tr>
<td>LSD</td>
<td>X</td>
<td>-</td>
<td>X²</td>
<td>X</td>
</tr>
<tr>
<td>Methadone</td>
<td>X¹</td>
<td>X¹</td>
<td>X²</td>
<td>-</td>
</tr>
<tr>
<td>EDDP</td>
<td>X¹</td>
<td>X¹</td>
<td>X²</td>
<td>X</td>
</tr>
<tr>
<td>Methaqualone</td>
<td>X</td>
<td>X</td>
<td>X²</td>
<td>X</td>
</tr>
<tr>
<td>6-Monoacetylmorphine (6-MAM)</td>
<td>X</td>
<td>X</td>
<td>X²</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Negative results need not necessarily be meaningful since most assays detect methadone alone and not the main metabolite EDDP. In urine, EDDP alone may be detected due to fast metabolizers or enzyme induction (interaction with e.g. rifampicin, carbamazepine, phenytoin, etc.). In these situations the analysis of EDDP is helpful.

2 Only usable as a screening test

X = Correct area of application

7.2 Substance group analyses (G)

Substance group analyses using immunoassays are analysis systems that detect a range of (but not all) structure-related substances in one analytical process.

The antibodies react with a more or less large number of structure-related substances or metabolites (q.v. §8). The result in each case only makes a qualitative statement (one up to several substances reacting with the antibody are detectable or not). Dependent on manufacturer, the calibration of substance class test systems is based on different standard substances, which leads to varying specificity in the results.

Examples of such substance group analyses are as follows: methods for detecting benzodiazepines, opiates, amphetamines, barbiturates and tricyclic antidepressants.

Dependent on method, urines with high concentrations (> measuring range) must not be diluted.

There is a connection between affinity to the antibody and the concentration of the substance.

7.2.1 Areas of application

<table>
<thead>
<tr>
<th>Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphetamines</td>
<td>X¹,²</td>
<td>X²</td>
<td>X³</td>
<td>X²</td>
</tr>
<tr>
<td>Barbiturates</td>
<td>X¹,²</td>
<td>X²</td>
<td>X³</td>
<td>X²</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>X¹,²</td>
<td>X²</td>
<td>X³</td>
<td>X²</td>
</tr>
<tr>
<td>Opiates</td>
<td>X¹</td>
<td>X</td>
<td>X³</td>
<td>X</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>X¹,²</td>
<td>-</td>
<td>X³</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Problems due to the varying reactivity of the antibodies with single substances within a substance class. Quantitative details are therefore not possible.

2 Negative results need not necessarily be meaningful since, dependent on method; individual substances of the substance class or their metabolites do not react. This also applies to the metabolites of a substance in single tests (e.g. methadone, tricyclic antidepressants).

3 Only usable as a screening test.

X = Correct area of application.
7.3 Long-term monitoring
If the excretion of a specific drug of abuse requires monitoring, this is only possible by comparing creatinine quotients. The creatinine quotients of the individual drugs are calculated as follows:

<table>
<thead>
<tr>
<th>Concentration of drug in the urine (µg/L)</th>
<th>=</th>
<th>Drug (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine concentration in the same urine (mmol/L)</td>
<td></td>
<td>Creatinine (mmol)</td>
</tr>
</tbody>
</table>

This comparison can prove interim consumption (value sample 1 → consumption → value sample 2) or depict the elimination rate of once-only consumption.

7.4 Comment
In every case, a chromatographic test method is more meaningful than most immunoassays. However, the latter are the methods of choice for rapid results, since chromatographic procedures involve a lot of work. The use of immunochemical group tests is indicated when there is a need for the rapid detection of the possible use of substances within a substance class (which can cover a large number of substances) and for series analyses. It must be noted that false positive and false negative results remain possible.

To some extent, the sensitivity of immunoassays is better than that of chromatographic methods. Since immunoassays do not permit any quantitative statements (except in the case of specific tests), results have to be interpreted according to application and additional measurements arranged if necessary (§12).

8. Cut-off values, sensitivity and specificity of immunoassays

8.1 Terminology

8.1.1 Cut-off values
By “cut-off” we mean the limits for decisions (yes/no) as to whether a result must be interpreted as positive or negative. In group tests, this value relates to the substance used to calibrate the test procedure.

There are various methods of determining these cut-off values:
1. Sensitivity limit of a test procedure (important for forensic purposes)
2. Determination of the limit at which 95% of the results are still found to be positive after taking specific doses of a substance (e.g. therapeutic dose) after a specific period of time (1 day, 2 days) (procedure formerly used by NIDA/SAMHSA)
3. Experience values based on the limits determined under 2) (NIDA today)
4. Taking on the values determined under 3) and supplementing the limits not determined with values based on experience

In these recommendations, alternatives 1) and 4) are used.

8.1.2 Detection limit/sensitivity
In most of the test procedures commercially available, analytical sensitivity is defined as follows:

The lowest result of a method that can be differentiated from zero with 95% probability (2s confidence limit).

Determining the variability of the results of zero calibrators within the required matrix in series determinations (on 2 different days, n = 20). Under the same conditions, various lower concentrations are analyzed until the value is found for which the 2s confidence limit is valid.

More recent findings indicate that when testing genuine samples with different concentrations of the substance to be defined, the sensitivity of the lowest still quantifiable amount can be defined (detection limit). The global significance of the test procedure refers to different concentrations of the substance under investigation (sensitivity).
8.1.3 Specificity
Substance group tests cannot be specific to single substances. Dependent on substance group, a reaction specific to substance group is required. One exception, for example, is screening for tri- and tetracyclic antidepressants. Most immunoassays conducted for tricyclic antidepressants fail to find effect-related substances (tetracyclic antidepressants) even though this would be desirable from a toxicological standpoint. Dependent on technology, it is possible to determine structurally similar substances that then simulate a positive result.

8.2 AGSA-recommended cut-off concentrations (µg/L) for instrumental immunoassays for urines without pre-analytical hydrolysis

<table>
<thead>
<tr>
<th>Single substance tests</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D*</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Cannabis (THC carboxylic acid)</td>
<td>S</td>
<td>50</td>
<td>X</td>
<td>50</td>
</tr>
<tr>
<td>Cocaine or cocaine metabolite (benzoylcegonine)</td>
<td>S</td>
<td>300</td>
<td>X</td>
<td>300</td>
</tr>
<tr>
<td>LSD</td>
<td>S</td>
<td>0.5</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Methadone</td>
<td>S</td>
<td>300</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>EDDP</td>
<td>S</td>
<td>100</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Methaqualone</td>
<td>S</td>
<td>300</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>6-Monoacetylmorphine (6-MAM)</td>
<td>S</td>
<td>10</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance class, substance</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D*</th>
</tr>
</thead>
<tbody>
<tr>
<td>G Amphetamines</td>
<td>S</td>
<td>500</td>
<td>X</td>
<td>1000</td>
</tr>
<tr>
<td>Barbiturates</td>
<td>S</td>
<td>200</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>S</td>
<td>100</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Opiates</td>
<td>S</td>
<td>300</td>
<td>X</td>
<td>2000 *)</td>
</tr>
</tbody>
</table>

S = Sensitivity limit
X = No recommendation
D*= Cut-off concentration in accordance with NIDA/SAMHSA
*) = Latest SAMHSA recommendation

Comment: No cut-off concentrations can be recommended for non-instrumental immunoassays since these are determined by the manufacturers and cannot be changed. Determination of tricyclic antidepressants in the urine belongs to this category of analysis methods. Hydrolysis of urine before analysis increases the concentration of non-bonded substances, e.g. unconjugated morphine and benzodiazepines.
9. Chromatographic methods (confirmation analysis)

9.1 Definition

Confirmation analyses in drug analysis involve chromatographic methods (usually using spectroscopic detection) to determine one or several single substances, which are used as secondary back up for an immunochemical result.

9.2 General remarks

Confirmation analyses in drug analysis involve chromatographic methods (usually using spectroscopic detection) to determine one or several single substances, which are used as secondary back up for an immunochemical result.

9.3 Methods

The following methods are suitable:

- Gas chromatography with mass spectrometric detection (all substances) (GC-MS)
- Gas chromatography with nitrogen-phosphorus detection (opiates, cocaine metabolites, amphetamines) (GC-NPD)
- High-pressure liquid chromatography (HPLC)
- High-pressure liquid chromatography with diode-array detection (amphetamines and designer drugs, opiates, etc.) (HPLC-DAD)
- High-pressure liquid chromatography with electrochemical detection (opiates) (HPLC-ECD)
- High-pressure liquid chromatography with mass spectrometric detection (HPLC-MS)
- Instrumental thin-layer chromatography with densitometry (opiates, cocaine and metabolites, THC carboxylic acid, etc.) (TLC)

Gas chromatography with mass–spectroscopic detection is the established method for confirmation analysis. When used correctly, it provides the most reliable results in terms of sensitivity and specificity. Most substances are analyzed in GC-MS as derivatives. Using deuterated internal standards; even variable extraction yields can largely be compensated. The reference spectrum libraries available today facilitate evaluation to a major extent. However, this method must only be used by adequately trained personnel since misinterpretations may very easily occur.

HPLC provides a good alternative to GC-MS confirmation in the case of amphetamines and designer drugs, since these substances can be determined without derivatization including their metabolites. The DAD and MS are detection systems that provide improved reliability for peak identification.

In comparison with the other methods, instrumental TLC is cheaper and faster. Generally, the substances are analyzed after prechromatographic derivatization. However, the UV spectra obtained are only group-specific.
9.4 Areas of application
A: Dependent on requirements, differential and confirmation analyses are required.
B: Confirmation analyses are only required if the immunochemical result is disputed by a patient.
C: Confirmation analyses are necessary for all positive immunotests. Dependent on the case, negative immunoassay results also require confirmation (e.g. urine samples from drug dealers).
D: Positive findings always require confirmation.

10. Cut-off values, sensitivity and specificity of chromatographic methods

10.1 Terminology
10.1.1 Cut-off values
As with immunoassays, the cut-off value means the limit for a decision on whether a result is to be interpreted as positive or negative. The cut-off concentrations for confirmation analysis methods generally differ from those of immunoassays. They always relate to single substances.

10.1.2 Sensitivity
Sensitivity means limit of detection of a method. This limit of detection is dependent on
• The substance under investigation
• The method of analysis used
• The extraction carried out
• Any matrix effects
As a rule, the sensitivity of the confirmation method should be greater than that of the screening test.

10.1.3 Specificity
The specificity of a screening method is understood to mean the ability to measure only the specified substance or substance group.
The specificity of the confirmation analysis should be better than that of the screening test.

10.1.4 Accuracy
The accuracy of a result means its agreement with the true value. It is limited by systematic errors.
The accuracy of the results of the chromatographic methods listed here is influenced by
• Extraction quality
• The choice of stationary phases (columns, TLC plates)
• Calibration of the equipment
• The choice of derivatisation reagents
• The biological matrix
• The quality of the reference spectrum library used
• Interpretation
10.2 AGSA-recommended cut-off concentrations

<table>
<thead>
<tr>
<th>Drug group</th>
<th>Single substance</th>
<th>GC-MS Cut-off concentration (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphetamine</td>
<td>500<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>500<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>Barbiturates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butalbital</td>
<td>200<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>Pentobarbital</td>
<td>200<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>Secobarbital</td>
<td>200<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Cocaine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoylecgonine</td>
<td>150<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>Opiates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphone</td>
<td>300<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>Codeine</td>
<td>300<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>Cannabis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THC carboxylic acid</td>
<td>15<sup>1</sup></td>
<td></td>
</tr>
</tbody>
</table>

1. SAMHSA (NIDA) recommendation
2. DOD recommendation
3. Only stated if the amphetamine concentration is > 200 µg/L

In the case of benzodiazepines, methadone, methaqualone and LSD, no cut-off concentrations are set.

11. Blood/serum analysis

11.1 Blood/serum analysis for differential diagnostics (A)

Immunological differential analysis for drug determination in blood, serum and plasma¹

<table>
<thead>
<tr>
<th>Substances, substance groups</th>
<th>Sample material in original procedure</th>
<th>Sample material</th>
<th>Sample pretreatment</th>
<th>Test results</th>
<th>Cut-off<sup>2</sup> µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbiturates</td>
<td>Serum</td>
<td>Serum or plasma</td>
<td>None (only necessary for whole blood)</td>
<td>Pos/neg</td>
<td>200 - 300 (dependent on test)</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>Serum</td>
<td>Serum or plasma</td>
<td>None (only necessary for whole blood)</td>
<td>Pos/neg</td>
<td>15 - 300</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>Serum</td>
<td>Serum or plasma</td>
<td>None (only necessary for whole blood)</td>
<td>Pos/neg</td>
<td>300</td>
</tr>
<tr>
<td>Opiates</td>
<td>Urine</td>
<td>Serum or plasma</td>
<td>Necessary</td>
<td>Pos/neg</td>
<td>Limit of sensitivity</td>
</tr>
<tr>
<td>Cocaine (benzoylecgonine)</td>
<td>Urine</td>
<td>Serum or plasma</td>
<td>Necessary</td>
<td>Pos/neg</td>
<td>Limit of sensitivity</td>
</tr>
<tr>
<td>THC metabolite (THC carboxylic acid)</td>
<td>Urine</td>
<td>Serum or plasma</td>
<td>Necessary</td>
<td>Pos/neg</td>
<td>Limit of sensitivity</td>
</tr>
<tr>
<td>Methadone</td>
<td>Urine</td>
<td>Serum or plasma</td>
<td>None (dependent on manufacturer)</td>
<td>Pos/ oder µg/L</td>
<td>Limit of sensitivity</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>Urine</td>
<td>Serum or plasma</td>
<td>Necessary</td>
<td>Pos/neg</td>
<td>Limit of sensitivity</td>
</tr>
<tr>
<td>Methaqualone</td>
<td>Urine</td>
<td>Serum or plasma</td>
<td>Necessary</td>
<td>Pos/neg</td>
<td>Limit of sensitivity</td>
</tr>
</tbody>
</table>

1. Plasma: (lithium, ammonium, sodium heparinate plasma)
2. (Methods dependent on manufacturer)

Most manufacturers of drugs of abuse analysis reagents also supply reagents for the analysis of barbiturates, benzodiazepines and tricyclic antidepressants in serum/plasma. The other substances or substance groups can be detected by urine detection methods after special sample pretreatment.
The problems relating to immunological detection methods addressed in §8 also apply to most of the serum/plasma determinations (cross-reactions of the antibodies in the group tests vary from manufacturer to manufacturer, different calibration substances).

The results only provide an indication and do not permit any determination of concentration. This can lead to confusion if the substance detected, e.g. in low therapeutic quantities, has already given a positive result and thus cannot be considered as a cause of intoxication.

11.2 Blood/serum analysis for forensic investigations (C)
Where forensic investigations are concerned, the analysis of the urine for drugs is generally insufficient. For example, in the case of road traffic violations or other crimes, to determine the actual impairment of the persons involved or to clarify the cause of death if there are fatalities, a quantitative determination of the drugs in the blood/serum must be carried out subsequent to the qualitative urine analysis. The following methods can be recommended for this:

- **Opiates**
 - GC-MS, HPLC-ECD, HPLC-DAD or HPLC-MS
- **Cocaine and metabolites**
 - GC-MS, GC-NPD, HPLC-MS
- **THC and THC metabolites**
 - GC-MS, HPLC-MS
- **Methadone**
 - GC-MS, GC-NPD, HPLC-DAD, HPLC-MS
- **Amphetamines and designer drugs**
 - GC-MS, HPLC-DAD, HPLC-MS
- **Benzodiazepines**
 - GC-MS, GC-ECD, HPLC-DAD, HPLC-MS
- **Barbiturates**
 - GC-MS, GC-NPD, HPLC-DAD
- **Methaqualone**
 - GC-MS, GC-NPD, HPLC-DAD

The use of deuterated internal standards is recommended for GC-MS and HPLC-MS analysis.

In forensic investigations, immunochemical procedures for blood analysis (generally after special sample pretreatment) have not evidence character and may not be used for quantification. In this context, no cut-off concentrations can be recommended.

12. Interpretation of the results

12.1 Steps in interpretation

12.1.1 Analytical interpretation (laboratory expert)
- Verification and interpretation of the results with consideration given to any pre-analytical conditions, “chain of custody” documents, quality assurance data, outliers and method specifications (sensitivity, specificity, cut-off, cross-reactivity, etc.)

12.1.2 Toxico logical interpretation (laboratory expert)
- Consideration given to dose, frequency of consumption, type of application, interactions, interindividual variability, tolerance, pharmacokinetics, pharmacogenetics.

12.1.3 Medical interpretation (client, laboratory expert)
- Consideration given to the individual’s history of health situation, e.g. existing illnesses (organ function, lack of enzymes, metabolic disorders, age)
- Evidence of drug influence at the time of the urine sample collection
- Doctor’s prescription? Self-medication? Food?
- Plausibility check
12.2 Factors that influence pharmacokinetics and analysis result

12.3 Significance of the result

12.3.1 Questions when using immunoassays

With a negative result:
- Has there been no consumption so far?
- Has there been no recent but occasional consumption?
- No consumption due to advance warning of urine sampling?
- Urine sample adulteration?

With a positive result:
- Confirmation using physico-chemical methods?
- Chronic or occasional consumption?
- Passive inhalation? (Cannabis, opiates, cocaine)?
- Cross-reactions with medicaments and food?

12.3.2 Answers

Immunoassay result negative:
- The tests used failed to detect any drugs and/or their metabolites:
 - The individual is consuming no drugs of abuse detectable with this test.
 - The individual is possibly consuming drugs that are not detectable. Reasons:
 - Samples mixed up
 - Concentration too low
 - Consumption frequency too low
 - Wrong time selected for urine sample collection
 - Urine sample manipulation
 - Test not sensitive enough or wrong test, incorrect analytical procedure
 - Wrong investigation requested
Immunoassay result positive:
- Indication of presence of drugs and/or their metabolites in quantities above the cut-off concentration. Evidence only by means of a confirmation analysis.
- No conclusions possible concerning physical and mental condition and behaviour at the time of urine sampling.

Confirmation analysis positive:
- Proof of at least one-time drug consumption.
- Proof of chronic drug consumption only possible in the case of long-term monitoring (multiple urine samples collected or repeated positive result, taking clinical and social facts into consideration).

12.4 Consequences of the results
Results of drug analyses can have legal, financial, social, medical and/or ethical consequences. Each individual tested has the right to a properly conducted investigation:
- The quality of the analysis and the reliability of the result are essential not only in the forensic but also in the socio-medical sectors.
- Critical interpretation of the result by a laboratory, quality assurance must be included.
- Critical interpretation of the result by the client (see §12.1.3).

13. Quality assurance in drug analysis

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal and external quality control</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Classification of the testing laboratory according to the QUALAB concept, Federal analysis list, KVG, KVV and KLV</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>(X)</td>
</tr>
<tr>
<td>In each case, confirmation analysis of positive samples</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dependent on requirements, confirmation analysis (particularly for positive samples)</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Internal and external quality controls must be conducted with recognized reference material of the known biological matrix. In the case of a method comparison, the sample values should be as close as possible to the cut-off concentration. The analysis spectrum must be covered by external quality checks (q.v. Appendix 3 for materials).

To ensure quality assurance in the laboratory, the criteria for running a medico-analytical laboratory are recommended (KBMAL).

For the compulsory external quality checks (interlaboratory tests), the following AGSA cut-off suggestions are recommended as limits for decisions in accordance with QUALAB:
- Cannabis 50 µg/L (In relation to THC carboxylic acid)
- Cocaine (metabolite) 200 µg/L (In relation to benzylecgonine)
- Barbiturates 300 µg/L (In relation to secobarbital)
- Benzodiazepines 100 µg/L (In relation to nordiazepam)
- Amphetamines 1000 µg/L (In relation to amphetamine or metamphethamine)
- Opiates 300 µg/L (In relation to morphine)
- Methadone 300 µg/L (In relation to methadone)

14. Documentation of the results and reports, archiving

The documentation serves as information while maintaining safety and confidentiality in the chain of custody. Electronic data media are equal in value to written material for the purposes of information and archiving.
14.1 Analysis order
The analysis order is issued using the form provided by the laboratory. The form should clearly document the analyses to be conducted. The order must contain the following data:

14.1.1 Unequivocal identification of the order
- Name of the client
- Date of the order or date received
- Signature of the client

14.1.2 Reason and/or clinical details
- Poisoning
- Substitution programs or withdrawal treatment
- Forensic (e.g. road traffic)
- Monitoring in the workplace, staff doctor examination
- Physiological factors (e.g. pregnancy, liver or kidney malfunction)
- Biological individuality (e.g. N-acetyl transferase)
- Prescribed and/or consumed drugs of abuse, medicaments or other relevant substances
- Other clinical data (e.g. clinical condition, dialysis, allergies)

14.1.3 Sample data (in forensic investigations)
- Date and time of sample collection (control)
- Sample material
- Type of sample (spot, collected urine)
- Special measures (emergency)

14.1.4 Personal data
- Unequivocal identification (last name, first name, date of birth or code)
- Gender
- Weight
- Address or locality
- Sample identification by the client

14.1.5 Tests required
- Correct statement of substance or substance group to be analyzed
- Additional information, e.g. confirmation analysis

14.2 Report
The receipt of any irregular orders must be appropriately documented in the report.

14.2.1 Material
- Type of sample material
- Description of the material prior to and subsequent to analysis

14.2.2 Result
Detection by immunochemical methods:
- Name of the single substance or substance group
- Interpretation
- Name of the reference substance
- Cut-off for the reference substance
- Value measured
- Details of the substances screened for but not found
- Details of the substances detected but not listed in the order form
Confirmation analyses (chromatographic methods):
- Name(s) of the single substances found\(^1\)
- Value measured\(^2\)
- Limits of detection\(^2\), cut-off\(^2\)
- Details of measurement inaccuracy\(^2\)
- Findings (q.v. §12)\(^2\)
- Details of the substances detected but not listed in the order form\(^2\)

14.2.3 Administrative data\(^1\)
- Date of sample collection and/or receipt of order\(^1\)
- Date of report (date of transmission)\(^1\)
- Datum of analysis\(^2\)
- Signature of the person responsible for the release of the report (also electronically)\(^1\)
- Type of transmission (e.g. phone, fax)\(^2\)
- Reference to any copies\(^1\)
- Reference to invoicing\(^2\)
- Address of the laboratory (address for queries)\(^1\)

\(^1\) Compulsory information
\(^2\) Optional information

14.3 Archiving
All the data listed under §14.1 and §14.2 must be archived by the client (§14.1) and the laboratory (§14.2).
The data (order forms, extracts from the quality manual, measurement protocols, quality controls, calibrations, reports) must be archived in such a way that it is at all times possible to obtain a copy of the analysis report. Electronic media (e.g. CD-ROM or magnetic media) must be given preference over classic methods of archiving (paper).

14.3.1 Data archiving period
Data of an exclusively clinical nature must be kept for a minimum of 5 years (unless otherwise specified).
Data of a forensic nature must be kept for a minimum of 10 years, unless explicitly directed otherwise by authorities to destroy them or eliminate specific personal references at an earlier date.
The details issued by KBMAL, QUALAB and data protection will also apply.

15. Urgency of the results

15.1 Levels of urgency
Urgency is subdivided into three levels:

<table>
<thead>
<tr>
<th>Level</th>
<th>Action</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>I:</td>
<td>Result should be available within a maximum of 3 hours</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II:</td>
<td>Result should be available within a maximum of 24 hours</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>III:</td>
<td>Result should be available within a few days</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Examples
I: Hospitals with emergency units. In cases of intoxication, it is important to detect toxic substances without any loss of time (emergency situation).
III: For therapists and patients in substitution programs, it is important to be able to detect or exclude the consumption of any other drugs within a useful period of time.
16. Costs, reimbursement, list of analyses

16.1 General remarks
In general, invoicing for drug analyses should follow the tariff system listed in the Federal Analysis List (issued by FDHA, 1994). This tariff is based on CAP data as well as an extensive investigation of public and private laboratories in Switzerland. It is thus representative for our purposes.

16.2 Drugs of abuse testing in the clinical sector and in differential diagnostics (A)
If the paying client is a social insurance, the use of the Federal Analysis List with its tariff is compulsory. Quality assurance (to be provided by the laboratory concerned) is included in this tariff system in accordance with the guidelines worked out by SULM (KBMAL) and QUALAB. The prerequisite for this is the laboratory’s accreditation as a medical laboratory both by the canton and the BSV as well as the conclusion of quality assurance agreements between the paying clients and those performing the service or the membership of the laboratory or head of the laboratory in an association which signs these agreements on a collective basis. Invoices are addressed to the patients.

16.3 Drugs of abuse testing in substitution programs or withdrawal treatment (B)
If the paying client is a social insurance, the use of the Federal Analysis List with its tariff is compulsory (as in §16.2).
Invoices are addressed to the patients.
If the paying client is not a social insurance, individual tariff rates are acceptable.
The tariffs must cover costs. The following basic rates must be applied:
• Material costs (including any sample collection material supplied)
• Equipment costs (equipment amortization, maintenance, power)
• Staffing costs (including insurance)
• Cost of premises
• Administration costs
The application of a special tariff must be set forth in a contract. Invoices are sent to the client or the representatives of the client institution as well as to any federal offices as necessary.

16.4 Drugs of abuse testing in forensic investigations (C)
Ideally, the Swiss Society of Forensic Medicine should issue an appropriate, uniform tariff to meet the requirements of forensic-toxicological investigations. Where possible, it should be closely based on the Federal List of Analyses. Invoices are sent to the client.

16.5 Drugs of abuse testing in the non-traditional sector (D)
The invoicing of analyses of this type must be at least based on the tariff of the Federal List of Analyses. For further clarifications, the tariff in §16.4 will apply. Invoices are sent to the client.
17. Legal aspects, standards, data protection

17.1 General prerequisites (cf. §14)
- In investigations of drugs of abuse, the client must be clearly identifiable.
- His legitimacy to order the investigation must be known.
- The laboratory conducting the investigation must have the relevant qualifications and permits.
- Result traceability must be guaranteed.
- The quality of the results must be provable.
- Results may only be made known to the person under investigation or to persons authorized by him/her or otherwise legally entitled.
- The laboratory conducting the investigation must disclose to the client the names of any subordinate persons placing orders.

17.2 Data protection
Data protection (raw data and results, patient data) must be guaranteed. The basis for this is the law governing data protection as well as the law governing medical insurance (KVG). General account must be taken of the following laws and standards:
- Doctors' professional secrecy in accordance with the KVG
- Data protection law
- Criminal law and official secrecy

17.3 Authorized clients

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Medical personnel</td>
</tr>
<tr>
<td>B</td>
<td>Persons authorized by withdrawal and substitution programs or as carers</td>
</tr>
<tr>
<td>C</td>
<td>Persons or institutions legally authorized</td>
</tr>
<tr>
<td>D</td>
<td>Anyone who has a justified interest according to civil law standards insofar as the person involved has been informed and is in agreement. The laboratory conducting the investigation bears no responsibility.</td>
</tr>
</tbody>
</table>

17.4 Laboratories authorized to conduct analyses for drugs of abuse

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cantonal and federally approved medical laboratories in accordance with the KVV and KLV</td>
</tr>
<tr>
<td>B</td>
<td>As A, with the addition of other investigation agencies approved by the authorities</td>
</tr>
<tr>
<td>C</td>
<td>Forensic-toxicological departments of the Institutes for Forensic Medicine, investigation agencies specially approved by the authorities</td>
</tr>
<tr>
<td>D</td>
<td>As B, approval according to A would be desirable</td>
</tr>
</tbody>
</table>
17.5 Accreditations and permits required by law for laboratories

<table>
<thead>
<tr>
<th></th>
<th>According to the Federal List of Analyses KVG</th>
<th>Compulsory quality assurance as laid down by contract (QUALAB concept)</th>
<th>EJPD, UVEK (ASTRA) or cantonal judicial authorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

17.6 Confidentiality of unrequested positive results

<table>
<thead>
<tr>
<th></th>
<th>Routine check</th>
<th>Additional results that permit conclusions about existing illnesses</th>
<th>In the case of a repeat (same parameters repeatedly positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>n</td>
<td>n</td>
<td>X(^1)</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>X(^1)</td>
<td>X</td>
</tr>
<tr>
<td>D</td>
<td>n</td>
<td>n</td>
<td>X(^1)</td>
</tr>
</tbody>
</table>

\(X\) = Disclose
\(n\) = Not to be disclosed
\(X^1\) = Only to be disclosed to medical personnel (carrying out treatment)
18. Further information

- Baselt RC. Disposition of Toxic Drugs and Chemicals in Man, 6th ed., Chemical Toxicology Institute, Foster City, CA, 2002.
- Forensic Toxicology Laboratory Guidelines, Society of Forensic Toxicologists (SOFT), als pdf-file auf der SOFT Website abrufbar: www.soft-tox.org.

- http://www.drogen-wissen.de/dr_k.html
- http://www.drogenscreening.info/ketamine.htm
- http://www.gifte.de/ketamine.htm
- http://www.jugendinfo.de/party-project/infos/ketamine.html
INTERNET LINKS

Since the authors have no influence on the mentioned web pages, they decline categorically any responsibility for damages which could appear at the visitor when clicking these links or using the contents of these web pages.

<table>
<thead>
<tr>
<th>Arbeitsgruppe Suchtstoffanalytik</th>
<th>AGSA</th>
<th>http://www.cscq.ch/agsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botanikseite</td>
<td>Botanikus</td>
<td>http://www.botanikus.de</td>
</tr>
<tr>
<td>Bund gegen Alkohol und Drogen im Straßenverkehr</td>
<td>BADS</td>
<td>http://www.bads.de/</td>
</tr>
<tr>
<td>Bundesamt für Polizeiweisen</td>
<td>BAP</td>
<td>http://internet.bap.admin.ch/</td>
</tr>
<tr>
<td>Bundesamt für Sozialversicherungen</td>
<td>BSV</td>
<td>http://www.bsv.admin.ch/</td>
</tr>
<tr>
<td>Bundesamt für Strassen</td>
<td>ASTRA</td>
<td>http://www.astra.admin.ch/</td>
</tr>
<tr>
<td>Bundeszentrale für gesundheitliche Auflägerung</td>
<td>BZgA</td>
<td>http://www.drugcom.de/</td>
</tr>
<tr>
<td>College of American Pathologists</td>
<td>CAP</td>
<td>http://www.cap.org</td>
</tr>
<tr>
<td>Deutsche Industrie-Norm</td>
<td>DIN</td>
<td>http://www2.din.de/</td>
</tr>
<tr>
<td>Eidgenössisches Departement des Inneren</td>
<td>EDI</td>
<td>http://www.edi.admin.ch/</td>
</tr>
<tr>
<td>Eidgenössisches Justiz- und Polizeidepartement</td>
<td>EJPD</td>
<td>http://www.ejpd.admin.ch/ejpd/de/home.html</td>
</tr>
<tr>
<td>European Committee for Standardization</td>
<td>CEN</td>
<td>http://www.cenorm.be/cenorm/index.htm</td>
</tr>
<tr>
<td>Giftpflanzen Compendium</td>
<td></td>
<td>http://www.giftpflanzen.com/</td>
</tr>
<tr>
<td>Hofmann, Foundation Albert -</td>
<td>AHF</td>
<td>http://www.hofmann.org/</td>
</tr>
<tr>
<td>Informationen zum Thema Drogen und Drogenscreening</td>
<td>http://www.drogenscreening.info</td>
<td></td>
</tr>
<tr>
<td>Interdisziplinäres Drogenlexikon mit Drogen-Linkliste</td>
<td>http://www.drogen-wissen.de/dr_k.html</td>
<td></td>
</tr>
<tr>
<td>International Symposium : 100th Birthday of Albert Hofmann</td>
<td>LSD</td>
<td>http://www.lsd.info/</td>
</tr>
<tr>
<td>Krankenpflege-Leistungsverordnung</td>
<td>KLV</td>
<td>http://www.admin.ch/ch/dsr/c832_112_31.html</td>
</tr>
<tr>
<td>Krankenversicherungsgesetz</td>
<td>KVG</td>
<td>http://www.admin.ch/ch/dsr/c832_10.html</td>
</tr>
<tr>
<td>Krankenversicherungsverordnung</td>
<td>KVV</td>
<td>http://www.admin.ch/ch/dsr/c832_102.html</td>
</tr>
<tr>
<td>Party-Project</td>
<td></td>
<td>http://www.party-project.de/</td>
</tr>
<tr>
<td>Public education psychoactive drugs and drug use</td>
<td>LYCAEUM</td>
<td>http://www.lycaeum.org</td>
</tr>
<tr>
<td>Relationship Between Humans & Psychoactives</td>
<td>EROWID</td>
<td>http://www.erowid.org/</td>
</tr>
<tr>
<td>Schweizerische Kommission für Qualitätssicherung im med. Labor</td>
<td>QUALAB</td>
<td>http://www.qualab.ch</td>
</tr>
<tr>
<td>Schweizerische Union für Laboratoriumsmedizin</td>
<td>SULM</td>
<td>http://www.sulm.ch/</td>
</tr>
<tr>
<td>Schweizerisches Zentrum für Qualitätskontrolle</td>
<td>CSCQ</td>
<td>http://www.cscq.ch/</td>
</tr>
<tr>
<td>Society of Forensic Toxicologists</td>
<td>SOFT</td>
<td>http://www.soft-tox.org</td>
</tr>
<tr>
<td>Toxikologie in der Notfallmedizin</td>
<td>GIFTE</td>
<td>http://www.gifte.de</td>
</tr>
<tr>
<td>U.S. Substance Abuse and Mental Health Services Administration</td>
<td>SAMHSA</td>
<td>http://www.samhsa.gov/</td>
</tr>
<tr>
<td>Verein für Medizinische Qualitätskontrolle</td>
<td>MQ</td>
<td>http://www.mqzh.ch/</td>
</tr>
</tbody>
</table>
19. List of working group members

<table>
<thead>
<tr>
<th>Name</th>
<th>Function/Representation</th>
<th>Address</th>
</tr>
</thead>
</table>
| Bertschi, Ingeborg | Swiss Association of Diagnostics Manufacturers (SVDI) English Guidelines | Abbott AG, Diagnostics Division Neuhofstrasse 23 6341 Baar
Tel: +41 (0) 41 768 4403
Fax: +41 (0) 41 768 4450
E-Mail: ingeborg.bertschi@abbott.com |
| Brenneisen, Rudolf | University of Berne Swiss Federal Office of Public Health (SFOPH/BAG) Swiss Society of Pharmacists (SSPh/SAV) | University of Berne Dept. of Clinical Research
Murtenstrasse 35 3010 Bern
Tel: +41 (0) 31 632 8714
Fax: +41 (0) 31 632 8721
E-Mail: Rudolf.brenneisen@dkf.unibe.ch |
| Briellmann, Thomas | Swiss Society of Forensic Medicine (SGRM) | University of Basle Institute of Forensic Medicine
Pestalozzistrasse 22 4056 Basel
Tel: +41 (0) 61 267 3895
Fax: +41 (0) 61 267 3907
E-Mail: thomas.briellmann@bs.ch |
| Deom, André Vasey, Sylvie | Quality Control Center Switzerland | CSCQ
2 Petit Bel-Air 1225 Chêne-Bourg
Tel: +41 (0) 22 305 52 36
Fax: +41 (0) 22 305 52 38
E-Mail: andredeom@hcuge.ch
cscq@hcuge.ch |
| Küffer, Hans | Swiss Union for Laboratory Medicine (SULM) French Guidelines Webmaster | LABCOMPENDIUM
Pierrabesque 8 1971 Grimisuat
Tel. +41 (0) 79 220 2426
Fax +41 (0) 27 398 7016
E-Mail: hans.kueffer@bluewin.ch |
| Rentsch, Katharina M. | National Reference Laboratory for Anaesthetic Drugs | Institute for Clinical Chemistry University Hospital Zurich
Rämistrasse 100 8091 Zürich
Tel: +41 (0) 1 255 2290
Fax: +41 (0) 1 255 4590
E-Mail: rentsch@ikc.unizh.ch |
| Scholer, André | Swiss Society for Clinical Chemistry (SSCC/SGKC) Acting as chairman | Clinical Chemistry Laboratory Dept. Central Laboratory
University Hospital Basle 4031 Basel
Tel: +41 (0) 61 265 4236
Fax: +41 (0) 61 265 4600
E-Mail: ascholer@uhbs.ch |
20. Pharmacokinetics, detectability

The detection of drugs of abuse is influenced by different factors (q.v. §12.2). In this appendix, we refer to detectability using immunochemical methods.

Amphetamines and Derivates

Metabolism: The rate of metabolism and excretion is dependent on the urinary pH: acidic urine increases (e.g. amphetamine: up to 78%/24 h, 68% unchanged), alkaline urine decreases excretion in urine (45%/24 h, 2% unchanged). 44% of methamphetamine is excreted unchanged, 6 - 20% as amphetamine and 10% as 4-hydroxymethamphetamine.

Medicaments: It should be noted that certain medicaments (e.g. anorectics) are metabolized to amphetamine or methamphetamine (Fig. 4).

MDMA ("Ecstasy") is mainly eliminated as an unchanged substance. Metabolites are formed by N-demethylation, ring cleavage, methylation and glucuronidation (Fig. 3).

Elimination half-life: 10 - 30 h. Amphetamine and methamphetamine appear in urine within 20 min after administration.

Detectability: Unchanged drug! Up to 48 h, e.g. an oral dose of 5 mg amphetamine: up to 29 h

Fig 1: Metabolism of amphetamines
Fig. 2: Metabolism of methamphetamines

\[
\text{Methamphetamine} \quad \xrightarrow{\text{4-Hydroxymethamphetamine}} \quad \text{Amphetamine}
\]

Fig. 3: Metabolism of MDMA

\[
\text{MDA (3,4-Methylendioxyamphetamine)} \quad \xrightarrow{\text{Glucuronides, Sulfates}} \quad \text{MDMA (3,4-Methylendioxymethamphetamine)}
\]

\[
\text{3,4-Dihydroxyamphetamine} \quad \xrightarrow{\text{4-Hydroxy-3-methoxyamphetamine}} \quad \text{3,4-Dihydroxymethamphetamine}
\]

\[
\text{4-Hydroxy-3-methoxymethamphetamine}
\]
Fig. 4: Substances with amphetamine or methamphetamine as a metabolite

Amphetamine as Metabolite

- Ethylamphetamine
- Clobenzorex
- Mefenorex
- Fenproporex
- Amfetaminil
- Prenylamine
- Fenethylline

Methamphetamine as Metabolite

- Dimethylamphetamine
- Benzphetamine
- Furfenorex
- Selegiline
- Fencamine
Barbiturates

Metabolism: Phenobarbital, pentobarbital, cyclobarbital, etc.: oxidation of the substituents R1 and/or R2 to C-5 → hydroxylation, carboxylation, etc. with subsequent conjugate formation (particularly glucuronides). Phenobarbital is excreted 25% unchanged, pentobarbital 50%.

Thio/barbiturate: → desulphuration S-2.

Methylphenobarbital: → N-demethylation.

Elimination half-life: 20 - 30 h (pentobarbital), 48 - 288 h (phenobarbital) 22 - 29 h (secobarbital).

Detectability: Up to 5 days (pentobarbital), phenobarbital up to 8 days

Fig. 5: Metabolism of barbiturates

Benzodiazepines

Metabolism: 1,4-Benzodiazepines (diazepam, chlordiazepoxid, etc.): as a result of desalkylation, oxydation and hydroxylation, the main metabolites nordiazepam and oxazepam are formed, which are eliminated renally as glucuronides after 3-hydroxylation.

7-Nitrobenzodiazepines (flunitrazepam, nitrazepam, etc.): metabolism by reduction to 7-amino derivatives, N-acetylation, N-demethylation, 3-hydroxylation and 3-O-glucuronidation. flunitrazepam is excreted less than 1% unchanged.

Triazolobenzodiazepines: 1- and 4-hydroxylation, by ring cleavage also formation of benzophenones (alprazolam).

Elimination half-life: 20 - 40 h (diazepam), 40 - 100 h (nordiazepam), 10 - 30 h (flunitrazepam), 8 - 20 h (bromazepam), 1 - 30 h (triazolam).

Detectability: Days to months (after long-term consumption).
Fig. 6: Metabolism of 1,4-benzodiazepines

1,4-Benzodiazepines

Medazepam → Diazepam → Temazepam

Nordiazepam → Oxazepam

Chlordiazepoxid → Glucuronide

Prazepam → 3-Hydroxyprazepam
Fig. 7: Metabolism of 7-nitrobenzodiazepine

7-Nitrobenzodiazepines

Flunitrazepam \(R_1 : \text{CH}_3 \) \(R_2 : \text{F} \) N-Demethylflunitrazepam
Nitrazepam \(: \text{H} \) \(: \text{H} \) Clonazepam \(: \text{H} \) \(: \text{Cl} \)

\[\text{N-Acetyl-} \quad \text{N-Acetyl-3-hydroxy-} \]
\[\text{7-Amino-} \quad \text{7-Amino-3-hydroxy-} \]

\[\text{Glucuronides} \]

Nitrazepam \(\rightarrow \) 2-Amino-5-nitrobenzophenone \(\rightarrow \) 3-Hydroxy-2-amino-5-nitrobenzophenone
Fig. 8: Metabolism of triazolobenzodiazepine

Triazolobenzodiazepines

Alprazolam $R_1 : CH_3$, $R_2 : H$, $R_3 : N$
Brotizolam $R_1 : CH_3$, $R_2 : Cl$, $R_3 : N$
Midazolam $R_1 : CH_3$, $R_2 : F$, $R_3 : CH$
Triazolam $R_1 : CH_3$, $R_2 : Cl$, $R_3 : N$
Cannabis

Metabolism: Due to oxidation of C-11 (and also in the side chain), several hydroxy- and carboxy metabolites are formed, which are mainly excreted as glucuronides.

Elimination half-life: 20 - 30 h (THC carboxylic acid).

Detectability: Up to 3 days (once-only consumption), up to 30 days (occasional consumption, once a week), up to 80 days (continuous consumption).

Fig. 9: Metabolism of delta-9-tetrahydrocannabinol (THC)
Cocaine

Metabolism: (Figure 10) The main metabolites are benzoylecgonine and ecgonine methyl ester (methylecgonine). They are formed by enzymatic (pseudocholinesterase) or spontaneous hydrolysis. Anhydroecgonine methyl ester is a specific marker for “crack” consumption, while cocaethylene is detectable after the simultaneous consumption of alcohol.

Elimination half-life: 0.5 - 1.5 h (cocaine), 3.5 - 8 h (benzoylecgonine), 3.5 - 6 h (ecgonine methyl ester).

Detectability: 4 - 12 h (cocaine), 1 - 4 days (benzoylecgonine), up to 5 days (benzoylecgonine, long-term consumption)

Fig. 10: Metabolism of cocaine

![Metabolism diagram](image-url)
Gamma-hydroxy-butyrate (GHB, „Liquid Ecstasy“)

Metabolism:
GHB is almost completely metabolized by alcohol dehydrogenase to unidentified oxidation products. Thus generally less than 5% of the dose of GHB is excreted in the urine unchanged (e.g. only about 1% after 25 mg/kg GHB).

Elimination half-life: 30 - 60 min.

Detectability: After oral administration of 25 mg GHB per kg around 1% will appear in urine, resulting in a detection window of 12 h.

Pharmacokinetic parameter:
Plasma (after administration of 25 mg/kg GHB): t\(_{\text{max}}\) = 20-45 min, C\(_{\text{max}}\) = ca. 40 µg/L.
Urine: maximum concentration after 30 - 60 min.

Detection method: Currently no immunological methods are available. Analysis in plasma or urine requires GC, GC/MS or CE-UV/MS.

Literature:

Fig. 11: Gamma-Hydroxy-Butyrate

There are no known gamma-hydroxy-butyrate metabolites.

Formula: HO-CH\(_2\)-CH\(_2\)-CH\(_2\)-COOH
Ketamine
(2-(2-Chlorophenyl)-2-(methylamino)-cyclohexanon [HCl])

Ketamine hydrochloride is an anaesthetic used in hospitals, where it is administered by the intravenous or intramuscular route. Ketamine is available only on prescription, but is not subject to the Betäubungsmittelgesetz [law relating to controlled drugs/narcotics]. It was first synthesised by the DuPont Company in 1962 and is structurally and pharmacologically related to phencyclidine.

In the Techno music scene, ketamine is known under the particular name "Special K". In this environment it is obtainable in liquid form or as a white crystalline powder and is either swallowed, injected or sniffed.

Metabolism:
(Figure 12)

Ketamine is metabolized in the liver primarily via N-demethylation and hydroxylation, followed by conjugation. The main pathway consists of N-demethylation by cytochrome P₄₅₀ to norketamine, an active metabolite with one third of the anesthetic potency of ketamine (Baselt 2002).

Active dose:
200 - 450 mg (oral), 50 - 150 mg (nasal), 30 - 120 mg (i.v., i.m.)

Onset of action:
15 - 20 min (oral), 5 min (nasal), 2 - 5 min (i.m.), less than 1 min (i.v.)

Duration of action:
1.5 - 2 h (oral), 1 - 1.5 h (nasal), 40 - 80 min (i.v., i.m.)

Elimination half-life:
80 – 190 min (ketamin)
240 min (norketamine)

Detectability:
1 d in urine

Detection method:
no immunological methods available, only detectable in urine (ketamine, norketamine, dehydronorketamine and conjugates) or blood with GC-MS or LC-MS

Literature:

http://www.drogen-wissen.de/dr_k.html
http://www.drogenscreening.info/ketamin.htm
http://www.gifte.de/ketamin.htm

Fig. 12: Metabolism of Ketamine
LSD

Metabolism: Metabolism has been studied in animals. Probable route: N-demethylation, N-deethylation, hydroxylation and glucuronidation. Main metabolite, established after illicit ingestion, is 2-oxo-3-OH-LSD

Elimination half-life: 3 – 4 h

Detectability: 1 – 2 d

Literature: Baselt RC. Disposition of Toxic Drugs and Chemicals in Men, 6th Edition, Chemical Toxicology, Institute, Foster City, California 2002, ISBN 0-9626523-5-0

Fig. 13: Metabolism of LSD
Methadone

Metabolism: (Figure 14) Methadone is metabolized by mono-, di-N-demethylation followed by spontaneous cyclization to 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-diphenylpyrroline (EMDP) and subsequent glucuronidation. The main metabolite is EDDP.

Elimination half-life: 15 - 55 h
Detectability: Methadone 1.5 – 3 d; EDDP 3 – 4 d

EDDP-detection: Since the metabolism of methadone is greatly accelerated by interaction with concomitant medication and rapid metabolism (see also Chapter 7.8), for testing compliance, EDDP should also be measured. This additional determination also enables any spiking of urine with methadone with manipulative intent to be detected (sale of leftover methadone/spikers).

<table>
<thead>
<tr>
<th>Methadone</th>
<th>EDDP</th>
<th>EDDP-detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>neg</td>
<td>neg</td>
<td>No methadone intake</td>
</tr>
<tr>
<td>pos</td>
<td>pos</td>
<td>Methadone intake, normal case</td>
</tr>
<tr>
<td>neg</td>
<td>pos</td>
<td>Fast metabolism, interaction with therapeutic drugs</td>
</tr>
<tr>
<td>pos</td>
<td>neg</td>
<td>Spiker</td>
</tr>
</tbody>
</table>

Fig. 14: Metabolism of Methadone
Methaqualone

Metabolism: Methaqualone is metabolized by hydroxylation at various positions, which gives rise to numerous metabolites, including a dihydroxy- and N-oxidized derivative.

(Figure 15)

Main metabolites: Methaqualone-N-oxid, 4'-Hydroxymethaqualone-glucuronide, 2'-Hydroxymethyl-methaqualone-glucuronide, 3-Hydroxymethaqualone, 2-Hydroxymethyl-methaqualone-glucuronide, 6-Hydroxymethaqualone-glucuronide

Elimination half-life: 20 - 60 h

Detectability: 3 – 4 d

N-Benzylpiperazin (A2) and related substances

New group of designer drugs with a central serotoninomimetic action, which includes inhibition of serotonin uptake and 5-HT; antagonistic effects. Other representatives of this class are 1-(3,4-methylenedioxybenzyl) piperazine (MDBP), 1-(4-methoxyphenyl) piperazine (MeOPP), 1-(3-trifluoromethylphenyl) piperazine (TFMPP) and 1-(3-chlorophenyl) piperazine (mCPP). Methaqualone-N-oxide, 4'-hydroxymethaqualone glucuronide, 2'-hydroxymethyl-methaqualone glucuronide, 3-hydroxymethaqualone, 2-hydroxymethylmethaqualone glucuronide, 6-hydroxymethaqualone glucuronide.

Metabolism: Staack et al. postulated the metabolism shown in Figure 17 on the basis of animal studies and analysis of human urine.

Elimination half-life: The only information available is non-published values (female patient from Case Report (2): approx. 5 hr.

Pharmacokinetic parameter: unknown

Detection method: No immunological methods available, only chromatographic methods e.g. HPLC, HPLC-MS or GC-MS

Fig. 16: Metabolism of N-Benzylpiperazine
Opiates

Metabolism: (Figure 17) Diacetylmorphine (heroin) is metabolized by acids and enzymes (esterases) to 6-monoacetylmorphine and morphine and is primarily excreted as 3-O- and 6-O-glucuronide.

Elimination half-life:
- 3 - 20 min (diacetylmorphine), 9 - 40 min (6-monoacetylmorphine), 1 - 7 h (morphine).

Detectability:
Up to 48 h (in individual cases up to 72 h)

Differential detection of opiate intake:
The consumption of poppy seeds as well as medicaments containing codeine can lead to detectable concentrations of opiates in urine. A reliable differentiation is immunochemically not possible. The metabolism of codeine to morphine in particular is subject to a high level of interindividual variability. Codeine-morphine ratios must therefore be interpreted with caution.

- Heroin consumption: 20 - 200 mg daily doses result in an urine level of 2 - 150 mg/L morphine, 0.05 - 10 mg/L codeine and 0 - 10 mg/L 6-monoacetylmorphine (specific marker for heroin consumption).
- Codeine consumption: 60 - 240 mg daily doses result in a urine level of 1 - 10 mg/L morphine and 5 - 50 mg/L codeine. Codeine-morphine ratios > 0.5, if morphine > 0.2 mg/L (cf. morphine consumption: codeine-morphine ratio < 0.5, if morphine > 0.2 mg/L).
- Poppy seed consumption: 1 - 10 g daily doses result in an urine level of 0.1 - 18 mg/L morphine and 0 - 2 mg/L codeine.

Fig. 17: Metabolism of opiates

- **3,6-Diacetylmorphine (Heroin)**
- **6-Monoacetylmorphine**
- **Codeine**
- **Glucuronide-O**
- **Morphine-6-O-Glucuronide**
- **Morphine-3-O-Glucuronide**
- **Morphine**
Psilocybine
Indole alkanamine (related to serotonin). From the sacred mushroom (Psilocybe mexicana, etc), synthesis by Hofmann et al.

Metabolism: (Fig 18) Psilocybine acts as a prodrug and is converted by intestinal esterases to psilocin, the actual active substance (dephosphorylation). Psilocin is converted via an intermediate product (4-hydroxyindol-3-yl acetaldehyde) to 4-hydroxytryptophol and the main end product 4-hydroxyindol-3-yl acetic acid.

Elimination half-life: 1.5 – 4.5 h
Detectability: App. 12 h
Pharmacokinetic parameter: $t_{max} \sim 30$ min, $C_{max} = 19$ ng/mL in plasma for psilocin, in urine 3 – 10 % psilocin, otherwise 4-hydroxyindole acetate acid: 1.5 – 4.5 h
Detection method: No immunological methods available, only chromatographic methods e.g. GCMS or LOMS

Literature:

Hasler F, Bourquin D, Brenneisen R, Bär T, Vollenweider FX. Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharmaceutica Acta Helvetiae 72 (1977) 175 – 84

Fig. 18: Metabolism of Psilocybine

\[
\begin{align*}
\text{Psilocybin} & \rightarrow \text{Psilocin} & \rightarrow \text{Psilocin-4-O-glucuronid} \\
\text{4-Hydroxyindol-3-yl-essigsäure} & \rightarrow \text{4-Hydroxyindol-3-yl-acetaldehyd} & \rightarrow \text{4-Hydroxytryptophol}
\end{align*}
\]
Appendix 3: External quality control

<table>
<thead>
<tr>
<th>Medicaments Drugs of Abuse</th>
<th>CH¹</th>
<th>CH²</th>
<th>DE¹</th>
<th>DE³</th>
<th>DE⁴</th>
<th>US</th>
<th>FR²</th>
<th>IT¹</th>
<th>NL</th>
<th>ES¹</th>
<th>GB¹</th>
<th>FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drugs of Abuse</td>
<td></td>
</tr>
<tr>
<td>Amphetamines</td>
<td>WSU</td>
<td>U</td>
<td>WSU</td>
<td>U</td>
<td>U</td>
<td>SU</td>
<td>SU</td>
<td>X</td>
<td>U</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbiturates</td>
<td>WSU</td>
<td>U</td>
<td>W</td>
<td>SU</td>
<td>SU</td>
<td>SU</td>
<td>SU</td>
<td>X</td>
<td>U</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>WSU</td>
<td>U</td>
<td>WSU</td>
<td>SU</td>
<td>SU</td>
<td>-</td>
<td>X</td>
<td>SU</td>
<td>X</td>
<td>U</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Cannabis</td>
<td>WSU</td>
<td>U</td>
<td>WSU</td>
<td>U</td>
<td>U</td>
<td>SU</td>
<td>SU</td>
<td>X</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Cocaine metabolites</td>
<td>WSU</td>
<td>U</td>
<td>WSU</td>
<td>U</td>
<td>U</td>
<td>SU</td>
<td>SU</td>
<td>X</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>WSU</td>
<td>U</td>
<td>WSU</td>
<td>SU</td>
<td>SU</td>
<td>SU</td>
<td>SU</td>
<td>SU</td>
<td>WSU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHB</td>
<td></td>
</tr>
<tr>
<td>Ketaminee</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>U</td>
<td>U</td>
<td>SU</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>WSU</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>X</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methaqualone</td>
<td>WSU</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>SU</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opiates</td>
<td>WSU</td>
<td>U</td>
<td>WSU</td>
<td>U</td>
<td>U</td>
<td>SU</td>
<td>SU</td>
<td>X</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Psilocybin</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>Trace elements</td>
<td></td>
</tr>
<tr>
<td>Volatile substances* and CDT</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Toxic substances**</td>
<td>S</td>
<td>WSU</td>
<td>WSU</td>
<td>SU</td>
<td>SU</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>WSU</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Acetaldehyde, acetone, ethanol, isopropyl alcohol, methanol and carbohydrate-deficient transferrins
**) including specific drugs of abuse and medicaments

<table>
<thead>
<tr>
<th>S</th>
<th>Serum/Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Whole blood</td>
</tr>
<tr>
<td>U</td>
<td>Urine</td>
</tr>
<tr>
<td>A</td>
<td>Aqueous Standard</td>
</tr>
<tr>
<td>X</td>
<td>Status 1996</td>
</tr>
</tbody>
</table>

CH¹, CH², D¹, D², SF, UK, USA: Status 2003
All other programs: Status 1996
Appendix 4: External quality control schemes

<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Field</th>
</tr>
</thead>
</table>
| Switzerland CH\(^1\) | Schweizerisches Zentrum für Qualitätskontrolle (CSCQ)
Chemin du Petit Bel-Air, CH - 1225 Chêne-Bourg | TDM, Drugs of abuse, Forensic |
| Switzerland CH\(^2\) | MQ Verein für medizinische Qualitätskontrolle
Universitätsspital Zürich, CH - 8091 Zürich | Drugs of abuse |
| Germany DE\(^1\) | GTFCH Institut für Rechtsmedizin und Verkehrsmedizin
Prof. Dr. Rolf Aderjan, Voss-Strasse 2,
D - 69115 Heidelberg | Forensic, Toxic substances |
| Germany DE\(^2\) | Deutsche Gesellschaft für Arbeits- und Umweltmedizin
Schillerstrasse 25, D - 91054 Erlangen | Metals, Toxic substances |
| Germany DE\(^3\) | Deutsche Gesellschaft für Klinische Chemie e.V. (DGKC)
Referenzinstitut für Bioanalytik
Im Mühlenbach 52a, D – 53127 Bonn | TDM, Drugs of abuse |
| Germany DE\(^4\) | Institut für Standardisierung und Dokumentation im
medizinischen Laboratorium e.V. (INSTAND)
Postfach 250211, D - 40093 Düsseldorf | TDM |
| Finland FI | Labquality
Ratamestrinkatu 11, SF - 00520 Helsinki | Drugs of abuse |
| France FR\(^1\) | Laboratoire des services de réanimation
rue H. Leguiloux, F - 35033 Rennes-Cedex | |
| France FR\(^2\) | Agence du Médicament, Département de Biologie Médicale,
25, Boulevard Saint Jacques, F - 75680 Paris-Cedex 14 | TDM |
| Italy IT\(^1\) | Fondazione Clinica del Lavoro, Laboratorio di Igiene Industriale
I - 27100 Pavia | Metals, Toxic substances |
| Italy IT\(^2\) | Ospedale CTO
via Palagi 1, I - 50139 Firenze | TDM |
| The Netherlands NL | Stichting Kwaliteitsbewaking Klinische Geneesmiddelenanalyse en Toxicologie
P.O. Bos 43100, NL - 2504 AC Den Haag | Drugs of abuse, TDM |
| Spain ES\(^1\) | Asociacion Española de Farmaceuticos Analistas (AEFA)
AEFA
C/ Condado de Treviño, E – 28033 Madrid | Drugs of abuse |
| Spain ES\(^2\) | Comision de Control de Calidad, Sociedad Española de
Quimica Clinica
Liansa 51, E - 08015 Barcelona | TDM |
| United Kingdom GB\(^1\) | Cardiff Bioanalytical Services Ltd.
Cardiff MediCentre, Heath Park, UK Cardiff CF4 4UJ, Wales | TDM, Drugs of abuse |
| United Kingdom GB\(^2\) | UK-NEQUAS OFFICE Toxicology,
UK Sheffield SS, England | Headquarters |
| U.S. CAP | College of Pathologists
325 Waukegan Road, Northfield, IL 60093-9814 / USA | }